Use Newton's method to find the first 5 approximations of the solution to the equation LaTeX:  \displaystyle \sin{\left(x \right)}= \frac{999 x^{3}}{1000} - 4 using LaTeX:  \displaystyle x_0=1 .

Using the formula for Newton's method gives LaTeX:  x_{n+1} =  x_{n} - \frac{- \frac{999 x_{n}^{3}}{1000} + \sin{\left(x_{n} \right)} + 4}{- \frac{2997 x_{n}^{2}}{1000} + \cos{\left(x_{n} \right)}}   Using LaTeX:  \displaystyle x_0 = 1 and LaTeX:  \displaystyle n = 0,1,2,3, and LaTeX:  \displaystyle 4 gives: LaTeX:  x_{1} =  (1.0000000000) - \frac{- \frac{999 (1.0000000000)^{3}}{1000} + \sin{\left((1.0000000000) \right)} + 4}{- \frac{2997 (1.0000000000)^{2}}{1000} + \cos{\left((1.0000000000) \right)}} = 2.5640796969 LaTeX:  x_{2} =  (2.5640796969) - \frac{- \frac{999 (2.5640796969)^{3}}{1000} + \sin{\left((2.5640796969) \right)} + 4}{- \frac{2997 (2.5640796969)^{2}}{1000} + \cos{\left((2.5640796969) \right)}} = 1.9655505468 LaTeX:  x_{3} =  (1.9655505468) - \frac{- \frac{999 (1.9655505468)^{3}}{1000} + \sin{\left((1.9655505468) \right)} + 4}{- \frac{2997 (1.9655505468)^{2}}{1000} + \cos{\left((1.9655505468) \right)}} = 1.7429503384 LaTeX:  x_{4} =  (1.7429503384) - \frac{- \frac{999 (1.7429503384)^{3}}{1000} + \sin{\left((1.7429503384) \right)} + 4}{- \frac{2997 (1.7429503384)^{2}}{1000} + \cos{\left((1.7429503384) \right)}} = 1.7101388021 LaTeX:  x_{5} =  (1.7101388021) - \frac{- \frac{999 (1.7101388021)^{3}}{1000} + \sin{\left((1.7101388021) \right)} + 4}{- \frac{2997 (1.7101388021)^{2}}{1000} + \cos{\left((1.7101388021) \right)}} = 1.7094514866