Use Newton's method to find the first 5 approximations of the solution to the equation LaTeX:  \displaystyle \sin{\left(x \right)}= \frac{19 x^{3}}{1000} - 8 using LaTeX:  \displaystyle x_0=7 .

Using the formula for Newton's method gives LaTeX:  x_{n+1} =  x_{n} - \frac{- \frac{19 x_{n}^{3}}{1000} + \sin{\left(x_{n} \right)} + 8}{- \frac{57 x_{n}^{2}}{1000} + \cos{\left(x_{n} \right)}}   Using LaTeX:  \displaystyle x_0 = 7 and LaTeX:  \displaystyle n = 0,1,2,3, and LaTeX:  \displaystyle 4 gives: LaTeX:  x_{1} =  (7.0000000000) - \frac{- \frac{19 (7.0000000000)^{3}}{1000} + \sin{\left((7.0000000000) \right)} + 8}{- \frac{57 (7.0000000000)^{2}}{1000} + \cos{\left((7.0000000000) \right)}} = 8.0494772030 LaTeX:  x_{2} =  (8.0494772030) - \frac{- \frac{19 (8.0494772030)^{3}}{1000} + \sin{\left((8.0494772030) \right)} + 8}{- \frac{57 (8.0494772030)^{2}}{1000} + \cos{\left((8.0494772030) \right)}} = 7.8105945761 LaTeX:  x_{3} =  (7.8105945761) - \frac{- \frac{19 (7.8105945761)^{3}}{1000} + \sin{\left((7.8105945761) \right)} + 8}{- \frac{57 (7.8105945761)^{2}}{1000} + \cos{\left((7.8105945761) \right)}} = 7.7948051865 LaTeX:  x_{4} =  (7.7948051865) - \frac{- \frac{19 (7.7948051865)^{3}}{1000} + \sin{\left((7.7948051865) \right)} + 8}{- \frac{57 (7.7948051865)^{2}}{1000} + \cos{\left((7.7948051865) \right)}} = 7.7947360290 LaTeX:  x_{5} =  (7.7947360290) - \frac{- \frac{19 (7.7947360290)^{3}}{1000} + \sin{\left((7.7947360290) \right)} + 8}{- \frac{57 (7.7947360290)^{2}}{1000} + \cos{\left((7.7947360290) \right)}} = 7.7947360276