Use Newton's method to find the first 5 approximations of the solution to the equation LaTeX:  \displaystyle \cos{\left(x \right)}= \frac{67 x^{3}}{1000} - 2 using LaTeX:  \displaystyle x_0=3 .

Using the formula for Newton's method gives LaTeX:  x_{n+1} =  x_{n} - \frac{- \frac{67 x_{n}^{3}}{1000} + \cos{\left(x_{n} \right)} + 2}{- \frac{201 x_{n}^{2}}{1000} - \sin{\left(x_{n} \right)}}   Using LaTeX:  \displaystyle x_0 = 3 and LaTeX:  \displaystyle n = 0,1,2,3, and LaTeX:  \displaystyle 4 gives: LaTeX:  x_{1} =  (3.0000000000) - \frac{- \frac{67 (3.0000000000)^{3}}{1000} + \cos{\left((3.0000000000) \right)} + 2}{- \frac{201 (3.0000000000)^{2}}{1000} - \sin{\left((3.0000000000) \right)}} = 2.5902854730 LaTeX:  x_{2} =  (2.5902854730) - \frac{- \frac{67 (2.5902854730)^{3}}{1000} + \cos{\left((2.5902854730) \right)} + 2}{- \frac{201 (2.5902854730)^{2}}{1000} - \sin{\left((2.5902854730) \right)}} = 2.5815897545 LaTeX:  x_{3} =  (2.5815897545) - \frac{- \frac{67 (2.5815897545)^{3}}{1000} + \cos{\left((2.5815897545) \right)} + 2}{- \frac{201 (2.5815897545)^{2}}{1000} - \sin{\left((2.5815897545) \right)}} = 2.5815859185 LaTeX:  x_{4} =  (2.5815859185) - \frac{- \frac{67 (2.5815859185)^{3}}{1000} + \cos{\left((2.5815859185) \right)} + 2}{- \frac{201 (2.5815859185)^{2}}{1000} - \sin{\left((2.5815859185) \right)}} = 2.5815859185 LaTeX:  x_{5} =  (2.5815859185) - \frac{- \frac{67 (2.5815859185)^{3}}{1000} + \cos{\left((2.5815859185) \right)} + 2}{- \frac{201 (2.5815859185)^{2}}{1000} - \sin{\left((2.5815859185) \right)}} = 2.5815859185