Use Newton's method to find the first 5 approximations of the solution to the equation LaTeX:  \displaystyle \sin{\left(x \right)}= \frac{949 x^{3}}{1000} - 9 using LaTeX:  \displaystyle x_0=3 .

Using the formula for Newton's method gives LaTeX:  x_{n+1} =  x_{n} - \frac{- \frac{949 x_{n}^{3}}{1000} + \sin{\left(x_{n} \right)} + 9}{- \frac{2847 x_{n}^{2}}{1000} + \cos{\left(x_{n} \right)}}   Using LaTeX:  \displaystyle x_0 = 3 and LaTeX:  \displaystyle n = 0,1,2,3, and LaTeX:  \displaystyle 4 gives: LaTeX:  x_{1} =  (3.0000000000) - \frac{- \frac{949 (3.0000000000)^{3}}{1000} + \sin{\left((3.0000000000) \right)} + 9}{- \frac{2847 (3.0000000000)^{2}}{1000} + \cos{\left((3.0000000000) \right)}} = 2.3806829505 LaTeX:  x_{2} =  (2.3806829505) - \frac{- \frac{949 (2.3806829505)^{3}}{1000} + \sin{\left((2.3806829505) \right)} + 9}{- \frac{2847 (2.3806829505)^{2}}{1000} + \cos{\left((2.3806829505) \right)}} = 2.1959165740 LaTeX:  x_{3} =  (2.1959165740) - \frac{- \frac{949 (2.1959165740)^{3}}{1000} + \sin{\left((2.1959165740) \right)} + 9}{- \frac{2847 (2.1959165740)^{2}}{1000} + \cos{\left((2.1959165740) \right)}} = 2.1792962529 LaTeX:  x_{4} =  (2.1792962529) - \frac{- \frac{949 (2.1792962529)^{3}}{1000} + \sin{\left((2.1792962529) \right)} + 9}{- \frac{2847 (2.1792962529)^{2}}{1000} + \cos{\left((2.1792962529) \right)}} = 2.1791660430 LaTeX:  x_{5} =  (2.1791660430) - \frac{- \frac{949 (2.1791660430)^{3}}{1000} + \sin{\left((2.1791660430) \right)} + 9}{- \frac{2847 (2.1791660430)^{2}}{1000} + \cos{\left((2.1791660430) \right)}} = 2.1791660351