Use Newton's method to find the first 5 approximations of the solution to the equation LaTeX:  \displaystyle \cos{\left(x \right)}= \frac{199 x^{3}}{250} - 5 using LaTeX:  \displaystyle x_0=1 .

Using the formula for Newton's method gives LaTeX:  x_{n+1} =  x_{n} - \frac{- \frac{199 x_{n}^{3}}{250} + \cos{\left(x_{n} \right)} + 5}{- \frac{597 x_{n}^{2}}{250} - \sin{\left(x_{n} \right)}}   Using LaTeX:  \displaystyle x_0 = 1 and LaTeX:  \displaystyle n = 0,1,2,3, and LaTeX:  \displaystyle 4 gives: LaTeX:  x_{1} =  (1.0000000000) - \frac{- \frac{199 (1.0000000000)^{3}}{250} + \cos{\left((1.0000000000) \right)} + 5}{- \frac{597 (1.0000000000)^{2}}{250} - \sin{\left((1.0000000000) \right)}} = 2.4690648494 LaTeX:  x_{2} =  (2.4690648494) - \frac{- \frac{199 (2.4690648494)^{3}}{250} + \cos{\left((2.4690648494) \right)} + 5}{- \frac{597 (2.4690648494)^{2}}{250} - \sin{\left((2.4690648494) \right)}} = 1.9576498710 LaTeX:  x_{3} =  (1.9576498710) - \frac{- \frac{199 (1.9576498710)^{3}}{250} + \cos{\left((1.9576498710) \right)} + 5}{- \frac{597 (1.9576498710)^{2}}{250} - \sin{\left((1.9576498710) \right)}} = 1.8237668829 LaTeX:  x_{4} =  (1.8237668829) - \frac{- \frac{199 (1.8237668829)^{3}}{250} + \cos{\left((1.8237668829) \right)} + 5}{- \frac{597 (1.8237668829)^{2}}{250} - \sin{\left((1.8237668829) \right)}} = 1.8149149762 LaTeX:  x_{5} =  (1.8149149762) - \frac{- \frac{199 (1.8149149762)^{3}}{250} + \cos{\left((1.8149149762) \right)} + 5}{- \frac{597 (1.8149149762)^{2}}{250} - \sin{\left((1.8149149762) \right)}} = 1.8148775158