Use Newton's method to find the first 5 approximations of the solution to the equation LaTeX:  \displaystyle \sin{\left(x \right)}= \frac{437 x^{3}}{1000} - 8 using LaTeX:  \displaystyle x_0=3 .

Using the formula for Newton's method gives LaTeX:  x_{n+1} =  x_{n} - \frac{- \frac{437 x_{n}^{3}}{1000} + \sin{\left(x_{n} \right)} + 8}{- \frac{1311 x_{n}^{2}}{1000} + \cos{\left(x_{n} \right)}}   Using LaTeX:  \displaystyle x_0 = 3 and LaTeX:  \displaystyle n = 0,1,2,3, and LaTeX:  \displaystyle 4 gives: LaTeX:  x_{1} =  (3.0000000000) - \frac{- \frac{437 (3.0000000000)^{3}}{1000} + \sin{\left((3.0000000000) \right)} + 8}{- \frac{1311 (3.0000000000)^{2}}{1000} + \cos{\left((3.0000000000) \right)}} = 2.7139821614 LaTeX:  x_{2} =  (2.7139821614) - \frac{- \frac{437 (2.7139821614)^{3}}{1000} + \sin{\left((2.7139821614) \right)} + 8}{- \frac{1311 (2.7139821614)^{2}}{1000} + \cos{\left((2.7139821614) \right)}} = 2.6835936634 LaTeX:  x_{3} =  (2.6835936634) - \frac{- \frac{437 (2.6835936634)^{3}}{1000} + \sin{\left((2.6835936634) \right)} + 8}{- \frac{1311 (2.6835936634)^{2}}{1000} + \cos{\left((2.6835936634) \right)}} = 2.6832581008 LaTeX:  x_{4} =  (2.6832581008) - \frac{- \frac{437 (2.6832581008)^{3}}{1000} + \sin{\left((2.6832581008) \right)} + 8}{- \frac{1311 (2.6832581008)^{2}}{1000} + \cos{\left((2.6832581008) \right)}} = 2.6832580601 LaTeX:  x_{5} =  (2.6832580601) - \frac{- \frac{437 (2.6832580601)^{3}}{1000} + \sin{\left((2.6832580601) \right)} + 8}{- \frac{1311 (2.6832580601)^{2}}{1000} + \cos{\left((2.6832580601) \right)}} = 2.6832580601