Use Newton's method to find the first 5 approximations of the solution to the equation LaTeX:  \displaystyle \sin{\left(x \right)}= \frac{407 x^{3}}{1000} - 3 using LaTeX:  \displaystyle x_0=3 .

Using the formula for Newton's method gives LaTeX:  x_{n+1} =  x_{n} - \frac{- \frac{407 x_{n}^{3}}{1000} + \sin{\left(x_{n} \right)} + 3}{- \frac{1221 x_{n}^{2}}{1000} + \cos{\left(x_{n} \right)}}   Using LaTeX:  \displaystyle x_0 = 3 and LaTeX:  \displaystyle n = 0,1,2,3, and LaTeX:  \displaystyle 4 gives: LaTeX:  x_{1} =  (3.0000000000) - \frac{- \frac{407 (3.0000000000)^{3}}{1000} + \sin{\left((3.0000000000) \right)} + 3}{- \frac{1221 (3.0000000000)^{2}}{1000} + \cos{\left((3.0000000000) \right)}} = 2.3448631015 LaTeX:  x_{2} =  (2.3448631015) - \frac{- \frac{407 (2.3448631015)^{3}}{1000} + \sin{\left((2.3448631015) \right)} + 3}{- \frac{1221 (2.3448631015)^{2}}{1000} + \cos{\left((2.3448631015) \right)}} = 2.1381388288 LaTeX:  x_{3} =  (2.1381388288) - \frac{- \frac{407 (2.1381388288)^{3}}{1000} + \sin{\left((2.1381388288) \right)} + 3}{- \frac{1221 (2.1381388288)^{2}}{1000} + \cos{\left((2.1381388288) \right)}} = 2.1160760907 LaTeX:  x_{4} =  (2.1160760907) - \frac{- \frac{407 (2.1160760907)^{3}}{1000} + \sin{\left((2.1160760907) \right)} + 3}{- \frac{1221 (2.1160760907)^{2}}{1000} + \cos{\left((2.1160760907) \right)}} = 2.1158300819 LaTeX:  x_{5} =  (2.1158300819) - \frac{- \frac{407 (2.1158300819)^{3}}{1000} + \sin{\left((2.1158300819) \right)} + 3}{- \frac{1221 (2.1158300819)^{2}}{1000} + \cos{\left((2.1158300819) \right)}} = 2.1158300514