Use Newton's method to find the first 5 approximations of the solution to the equation LaTeX:  \displaystyle e^{- x}= \frac{659 x^{3}}{1000} - 6 using LaTeX:  \displaystyle x_0=3 .

Using the formula for Newton's method gives LaTeX:  x_{n+1} =  x_{n} - \frac{- \frac{659 x_{n}^{3}}{1000} + 6 + e^{- x_{n}}}{- \frac{1977 x_{n}^{2}}{1000} - e^{- x_{n}}}   Using LaTeX:  \displaystyle x_0 = 3 and LaTeX:  \displaystyle n = 0,1,2,3, and LaTeX:  \displaystyle 4 gives: LaTeX:  x_{1} =  (3.0000000000) - \frac{- \frac{659 (3.0000000000)^{3}}{1000} + 6 + e^{- (3.0000000000)}}{- \frac{1977 (3.0000000000)^{2}}{1000} - e^{- (3.0000000000)}} = 2.3418509739 LaTeX:  x_{2} =  (2.3418509739) - \frac{- \frac{659 (2.3418509739)^{3}}{1000} + 6 + e^{- (2.3418509739)}}{- \frac{1977 (2.3418509739)^{2}}{1000} - e^{- (2.3418509739)}} = 2.1254046623 LaTeX:  x_{3} =  (2.1254046623) - \frac{- \frac{659 (2.1254046623)^{3}}{1000} + 6 + e^{- (2.1254046623)}}{- \frac{1977 (2.1254046623)^{2}}{1000} - e^{- (2.1254046623)}} = 2.1024441160 LaTeX:  x_{4} =  (2.1024441160) - \frac{- \frac{659 (2.1024441160)^{3}}{1000} + 6 + e^{- (2.1024441160)}}{- \frac{1977 (2.1024441160)^{2}}{1000} - e^{- (2.1024441160)}} = 2.1021986016 LaTeX:  x_{5} =  (2.1021986016) - \frac{- \frac{659 (2.1021986016)^{3}}{1000} + 6 + e^{- (2.1021986016)}}{- \frac{1977 (2.1021986016)^{2}}{1000} - e^{- (2.1021986016)}} = 2.1021985738