A coffee with temperature LaTeX:  \displaystyle 171^\circ is left in a room with temperature LaTeX:  \displaystyle 55^\circ . After 5 minutes the temperature of the coffee is LaTeX:  \displaystyle 165^\circ , what is the temperature of the coffee after 14 minutes?

Newton's law of Cooling states that the change in temperature is directly proportional to the difference between the object's temperature and its surroundings. LaTeX:   \frac{dT}{dt} = k(T(t)-T_{\text{room}}) Using the substitution LaTeX:  \displaystyle y(t)=T(t)-55 and calculating the derivative gives LaTeX:  \displaystyle \frac{dy}{dt}=\frac{dT}{dt} . Calculating the new initial condition using the point LaTeX:  \displaystyle (5, 165) and the substition gives LaTeX:  \displaystyle y(0) = T(0)-55 = 116 . The point LaTeX:  \displaystyle (5, 165) must also be transformed to get LaTeX:  \displaystyle y(5) = T(5)-55 = 165 - 55 = 110 . Substituting both of these into the equation gives the new equaiton LaTeX:  \displaystyle \frac{dy}{dt}=ky which has the solution LaTeX:  \displaystyle y(t) = y(0)e^{kt}=116e^{kt} . Evaluating the function at the point gives LaTeX:  \displaystyle 110=116e^{5k} and isolating the exponential gives LaTeX:  \displaystyle \frac{55}{58}=e^{5k} . Solving for LaTeX:  \displaystyle k gives LaTeX:  \displaystyle k=\frac{\ln{\left(\frac{55}{58} \right)}}{5} . Substuting LaTeX:  \displaystyle k back into the equation gives LaTeX:  \displaystyle y(t) = 116e^{\frac{\ln{\left(\frac{55}{58} \right)}}{5}t} and simplifying gives LaTeX:  \displaystyle y(t) = 116 \left(\frac{55}{58}\right)^{\frac{t}{5}} . Substituting out LaTeX:  \displaystyle y(t) gives LaTeX:  T(t)-55 = 116 \left(\frac{55}{58}\right)^{\frac{t}{5}} \implies\, T(t)= 116 \left(\frac{55}{58}\right)^{\frac{t}{5}} + 55  Using LaTeX:  \displaystyle t = 14 gives LaTeX:  \displaystyle T =116 \left(\frac{55}{58}\right)^{\frac{14}{5}} + 55\approx 155.00^\circ