Use Newton's method to find the first 5 approximations of the solution to the equation LaTeX:  \displaystyle \cos{\left(x \right)}= \frac{17 x^{3}}{40} - 1 using LaTeX:  \displaystyle x_0=1 .

Using the formula for Newton's method gives LaTeX:  x_{n+1} =  x_{n} - \frac{- \frac{17 x_{n}^{3}}{40} + \cos{\left(x_{n} \right)} + 1}{- \frac{51 x_{n}^{2}}{40} - \sin{\left(x_{n} \right)}}   Using LaTeX:  \displaystyle x_0 = 1 and LaTeX:  \displaystyle n = 0,1,2,3, and LaTeX:  \displaystyle 4 gives: LaTeX:  x_{1} =  (1.0000000000) - \frac{- \frac{17 (1.0000000000)^{3}}{40} + \cos{\left((1.0000000000) \right)} + 1}{- \frac{51 (1.0000000000)^{2}}{40} - \sin{\left((1.0000000000) \right)}} = 1.5269631920 LaTeX:  x_{2} =  (1.5269631920) - \frac{- \frac{17 (1.5269631920)^{3}}{40} + \cos{\left((1.5269631920) \right)} + 1}{- \frac{51 (1.5269631920)^{2}}{40} - \sin{\left((1.5269631920) \right)}} = 1.4088053494 LaTeX:  x_{3} =  (1.4088053494) - \frac{- \frac{17 (1.4088053494)^{3}}{40} + \cos{\left((1.4088053494) \right)} + 1}{- \frac{51 (1.4088053494)^{2}}{40} - \sin{\left((1.4088053494) \right)}} = 1.4011123101 LaTeX:  x_{4} =  (1.4011123101) - \frac{- \frac{17 (1.4011123101)^{3}}{40} + \cos{\left((1.4011123101) \right)} + 1}{- \frac{51 (1.4011123101)^{2}}{40} - \sin{\left((1.4011123101) \right)}} = 1.4010805038 LaTeX:  x_{5} =  (1.4010805038) - \frac{- \frac{17 (1.4010805038)^{3}}{40} + \cos{\left((1.4010805038) \right)} + 1}{- \frac{51 (1.4010805038)^{2}}{40} - \sin{\left((1.4010805038) \right)}} = 1.4010805033