Use Newton's method to find the first 5 approximations of the solution to the equation LaTeX:  \displaystyle \sin{\left(x \right)}= \frac{481 x^{3}}{500} - 8 using LaTeX:  \displaystyle x_0=3 .

Using the formula for Newton's method gives LaTeX:  x_{n+1} =  x_{n} - \frac{- \frac{481 x_{n}^{3}}{500} + \sin{\left(x_{n} \right)} + 8}{- \frac{1443 x_{n}^{2}}{500} + \cos{\left(x_{n} \right)}}   Using LaTeX:  \displaystyle x_0 = 3 and LaTeX:  \displaystyle n = 0,1,2,3, and LaTeX:  \displaystyle 4 gives: LaTeX:  x_{1} =  (3.0000000000) - \frac{- \frac{481 (3.0000000000)^{3}}{500} + \sin{\left((3.0000000000) \right)} + 8}{- \frac{1443 (3.0000000000)^{2}}{500} + \cos{\left((3.0000000000) \right)}} = 2.3386409674 LaTeX:  x_{2} =  (2.3386409674) - \frac{- \frac{481 (2.3386409674)^{3}}{500} + \sin{\left((2.3386409674) \right)} + 8}{- \frac{1443 (2.3386409674)^{2}}{500} + \cos{\left((2.3386409674) \right)}} = 2.1210804244 LaTeX:  x_{3} =  (2.1210804244) - \frac{- \frac{481 (2.1210804244)^{3}}{500} + \sin{\left((2.1210804244) \right)} + 8}{- \frac{1443 (2.1210804244)^{2}}{500} + \cos{\left((2.1210804244) \right)}} = 2.0968185978 LaTeX:  x_{4} =  (2.0968185978) - \frac{- \frac{481 (2.0968185978)^{3}}{500} + \sin{\left((2.0968185978) \right)} + 8}{- \frac{1443 (2.0968185978)^{2}}{500} + \cos{\left((2.0968185978) \right)}} = 2.0965273603 LaTeX:  x_{5} =  (2.0965273603) - \frac{- \frac{481 (2.0965273603)^{3}}{500} + \sin{\left((2.0965273603) \right)} + 8}{- \frac{1443 (2.0965273603)^{2}}{500} + \cos{\left((2.0965273603) \right)}} = 2.0965273185