Use Newton's method to find the first 5 approximations of the solution to the equation LaTeX:  \displaystyle e^{- x}= \frac{117 x^{3}}{1000} - 2 using LaTeX:  \displaystyle x_0=3 .

Using the formula for Newton's method gives LaTeX:  x_{n+1} =  x_{n} - \frac{- \frac{117 x_{n}^{3}}{1000} + 2 + e^{- x_{n}}}{- \frac{351 x_{n}^{2}}{1000} - e^{- x_{n}}}   Using LaTeX:  \displaystyle x_0 = 3 and LaTeX:  \displaystyle n = 0,1,2,3, and LaTeX:  \displaystyle 4 gives: LaTeX:  x_{1} =  (3.0000000000) - \frac{- \frac{117 (3.0000000000)^{3}}{1000} + 2 + e^{- (3.0000000000)}}{- \frac{351 (3.0000000000)^{2}}{1000} - e^{- (3.0000000000)}} = 2.6543201814 LaTeX:  x_{2} =  (2.6543201814) - \frac{- \frac{117 (2.6543201814)^{3}}{1000} + 2 + e^{- (2.6543201814)}}{- \frac{351 (2.6543201814)^{2}}{1000} - e^{- (2.6543201814)}} = 2.6080628659 LaTeX:  x_{3} =  (2.6080628659) - \frac{- \frac{117 (2.6080628659)^{3}}{1000} + 2 + e^{- (2.6080628659)}}{- \frac{351 (2.6080628659)^{2}}{1000} - e^{- (2.6080628659)}} = 2.6072886398 LaTeX:  x_{4} =  (2.6072886398) - \frac{- \frac{117 (2.6072886398)^{3}}{1000} + 2 + e^{- (2.6072886398)}}{- \frac{351 (2.6072886398)^{2}}{1000} - e^{- (2.6072886398)}} = 2.6072884257 LaTeX:  x_{5} =  (2.6072884257) - \frac{- \frac{117 (2.6072884257)^{3}}{1000} + 2 + e^{- (2.6072884257)}}{- \frac{351 (2.6072884257)^{2}}{1000} - e^{- (2.6072884257)}} = 2.6072884257