Use Newton's method to find the first 5 approximations of the solution to the equation LaTeX:  \displaystyle e^{- x}= \frac{47 x^{3}}{50} - 4 using LaTeX:  \displaystyle x_0=1 .

Using the formula for Newton's method gives LaTeX:  x_{n+1} =  x_{n} - \frac{- \frac{47 x_{n}^{3}}{50} + 4 + e^{- x_{n}}}{- \frac{141 x_{n}^{2}}{50} - e^{- x_{n}}}   Using LaTeX:  \displaystyle x_0 = 1 and LaTeX:  \displaystyle n = 0,1,2,3, and LaTeX:  \displaystyle 4 gives: LaTeX:  x_{1} =  (1.0000000000) - \frac{- \frac{47 (1.0000000000)^{3}}{50} + 4 + e^{- (1.0000000000)}}{- \frac{141 (1.0000000000)^{2}}{50} - e^{- (1.0000000000)}} = 2.0752851557 LaTeX:  x_{2} =  (2.0752851557) - \frac{- \frac{47 (2.0752851557)^{3}}{50} + 4 + e^{- (2.0752851557)}}{- \frac{141 (2.0752851557)^{2}}{50} - e^{- (2.0752851557)}} = 1.7268081679 LaTeX:  x_{3} =  (1.7268081679) - \frac{- \frac{47 (1.7268081679)^{3}}{50} + 4 + e^{- (1.7268081679)}}{- \frac{141 (1.7268081679)^{2}}{50} - e^{- (1.7268081679)}} = 1.6496758167 LaTeX:  x_{4} =  (1.6496758167) - \frac{- \frac{47 (1.6496758167)^{3}}{50} + 4 + e^{- (1.6496758167)}}{- \frac{141 (1.6496758167)^{2}}{50} - e^{- (1.6496758167)}} = 1.6461168327 LaTeX:  x_{5} =  (1.6461168327) - \frac{- \frac{47 (1.6461168327)^{3}}{50} + 4 + e^{- (1.6461168327)}}{- \frac{141 (1.6461168327)^{2}}{50} - e^{- (1.6461168327)}} = 1.6461094721