Use Newton's method to find the first 5 approximations of the solution to the equation LaTeX:  \displaystyle \cos{\left(x \right)}= \frac{49 x^{3}}{50} - 7 using LaTeX:  \displaystyle x_0=1 .

Using the formula for Newton's method gives LaTeX:  x_{n+1} =  x_{n} - \frac{- \frac{49 x_{n}^{3}}{50} + \cos{\left(x_{n} \right)} + 7}{- \frac{147 x_{n}^{2}}{50} - \sin{\left(x_{n} \right)}}   Using LaTeX:  \displaystyle x_0 = 1 and LaTeX:  \displaystyle n = 0,1,2,3, and LaTeX:  \displaystyle 4 gives: LaTeX:  x_{1} =  (1.0000000000) - \frac{- \frac{49 (1.0000000000)^{3}}{50} + \cos{\left((1.0000000000) \right)} + 7}{- \frac{147 (1.0000000000)^{2}}{50} - \sin{\left((1.0000000000) \right)}} = 2.7348545929 LaTeX:  x_{2} =  (2.7348545929) - \frac{- \frac{49 (2.7348545929)^{3}}{50} + \cos{\left((2.7348545929) \right)} + 7}{- \frac{147 (2.7348545929)^{2}}{50} - \sin{\left((2.7348545929) \right)}} = 2.1110270712 LaTeX:  x_{3} =  (2.1110270712) - \frac{- \frac{49 (2.1110270712)^{3}}{50} + \cos{\left((2.1110270712) \right)} + 7}{- \frac{147 (2.1110270712)^{2}}{50} - \sin{\left((2.1110270712) \right)}} = 1.9151866464 LaTeX:  x_{4} =  (1.9151866464) - \frac{- \frac{49 (1.9151866464)^{3}}{50} + \cos{\left((1.9151866464) \right)} + 7}{- \frac{147 (1.9151866464)^{2}}{50} - \sin{\left((1.9151866464) \right)}} = 1.8962599002 LaTeX:  x_{5} =  (1.8962599002) - \frac{- \frac{49 (1.8962599002)^{3}}{50} + \cos{\left((1.8962599002) \right)} + 7}{- \frac{147 (1.8962599002)^{2}}{50} - \sin{\left((1.8962599002) \right)}} = 1.8960905328