Use Newton's method to find the first 5 approximations of the solution to the equation LaTeX:  \displaystyle e^{- x}= \frac{743 x^{3}}{1000} - 6 using LaTeX:  \displaystyle x_0=3 .

Using the formula for Newton's method gives LaTeX:  x_{n+1} =  x_{n} - \frac{- \frac{743 x_{n}^{3}}{1000} + 6 + e^{- x_{n}}}{- \frac{2229 x_{n}^{2}}{1000} - e^{- x_{n}}}   Using LaTeX:  \displaystyle x_0 = 3 and LaTeX:  \displaystyle n = 0,1,2,3, and LaTeX:  \displaystyle 4 gives: LaTeX:  x_{1} =  (3.0000000000) - \frac{- \frac{743 (3.0000000000)^{3}}{1000} + 6 + e^{- (3.0000000000)}}{- \frac{2229 (3.0000000000)^{2}}{1000} - e^{- (3.0000000000)}} = 2.3032986285 LaTeX:  x_{2} =  (2.3032986285) - \frac{- \frac{743 (2.3032986285)^{3}}{1000} + 6 + e^{- (2.3032986285)}}{- \frac{2229 (2.3032986285)^{2}}{1000} - e^{- (2.3032986285)}} = 2.0534824958 LaTeX:  x_{3} =  (2.0534824958) - \frac{- \frac{743 (2.0534824958)^{3}}{1000} + 6 + e^{- (2.0534824958)}}{- \frac{2229 (2.0534824958)^{2}}{1000} - e^{- (2.0534824958)}} = 2.0214250437 LaTeX:  x_{4} =  (2.0214250437) - \frac{- \frac{743 (2.0214250437)^{3}}{1000} + 6 + e^{- (2.0214250437)}}{- \frac{2229 (2.0214250437)^{2}}{1000} - e^{- (2.0214250437)}} = 2.0209258503 LaTeX:  x_{5} =  (2.0209258503) - \frac{- \frac{743 (2.0209258503)^{3}}{1000} + 6 + e^{- (2.0209258503)}}{- \frac{2229 (2.0209258503)^{2}}{1000} - e^{- (2.0209258503)}} = 2.0209257306