Use Newton's method to find the first 5 approximations of the solution to the equation LaTeX:  \displaystyle e^{- x}= \frac{489 x^{3}}{1000} - 5 using LaTeX:  \displaystyle x_0=3 .

Using the formula for Newton's method gives LaTeX:  x_{n+1} =  x_{n} - \frac{- \frac{489 x_{n}^{3}}{1000} + 5 + e^{- x_{n}}}{- \frac{1467 x_{n}^{2}}{1000} - e^{- x_{n}}}   Using LaTeX:  \displaystyle x_0 = 3 and LaTeX:  \displaystyle n = 0,1,2,3, and LaTeX:  \displaystyle 4 gives: LaTeX:  x_{1} =  (3.0000000000) - \frac{- \frac{489 (3.0000000000)^{3}}{1000} + 5 + e^{- (3.0000000000)}}{- \frac{1467 (3.0000000000)^{2}}{1000} - e^{- (3.0000000000)}} = 2.3847925806 LaTeX:  x_{2} =  (2.3847925806) - \frac{- \frac{489 (2.3847925806)^{3}}{1000} + 5 + e^{- (2.3847925806)}}{- \frac{1467 (2.3847925806)^{2}}{1000} - e^{- (2.3847925806)}} = 2.2022096134 LaTeX:  x_{3} =  (2.2022096134) - \frac{- \frac{489 (2.2022096134)^{3}}{1000} + 5 + e^{- (2.2022096134)}}{- \frac{1467 (2.2022096134)^{2}}{1000} - e^{- (2.2022096134)}} = 2.1867056190 LaTeX:  x_{4} =  (2.1867056190) - \frac{- \frac{489 (2.1867056190)^{3}}{1000} + 5 + e^{- (2.1867056190)}}{- \frac{1467 (2.1867056190)^{2}}{1000} - e^{- (2.1867056190)}} = 2.1865987884 LaTeX:  x_{5} =  (2.1865987884) - \frac{- \frac{489 (2.1865987884)^{3}}{1000} + 5 + e^{- (2.1865987884)}}{- \frac{1467 (2.1865987884)^{2}}{1000} - e^{- (2.1865987884)}} = 2.1865987834