Use Newton's method to find the first 5 approximations of the solution to the equation LaTeX:  \displaystyle \cos{\left(x \right)}= \frac{617 x^{3}}{1000} - 9 using LaTeX:  \displaystyle x_0=3 .

Using the formula for Newton's method gives LaTeX:  x_{n+1} =  x_{n} - \frac{- \frac{617 x_{n}^{3}}{1000} + \cos{\left(x_{n} \right)} + 9}{- \frac{1851 x_{n}^{2}}{1000} - \sin{\left(x_{n} \right)}}   Using LaTeX:  \displaystyle x_0 = 3 and LaTeX:  \displaystyle n = 0,1,2,3, and LaTeX:  \displaystyle 4 gives: LaTeX:  x_{1} =  (3.0000000000) - \frac{- \frac{617 (3.0000000000)^{3}}{1000} + \cos{\left((3.0000000000) \right)} + 9}{- \frac{1851 (3.0000000000)^{2}}{1000} - \sin{\left((3.0000000000) \right)}} = 2.4851826956 LaTeX:  x_{2} =  (2.4851826956) - \frac{- \frac{617 (2.4851826956)^{3}}{1000} + \cos{\left((2.4851826956) \right)} + 9}{- \frac{1851 (2.4851826956)^{2}}{1000} - \sin{\left((2.4851826956) \right)}} = 2.3803514230 LaTeX:  x_{3} =  (2.3803514230) - \frac{- \frac{617 (2.3803514230)^{3}}{1000} + \cos{\left((2.3803514230) \right)} + 9}{- \frac{1851 (2.3803514230)^{2}}{1000} - \sin{\left((2.3803514230) \right)}} = 2.3762709571 LaTeX:  x_{4} =  (2.3762709571) - \frac{- \frac{617 (2.3762709571)^{3}}{1000} + \cos{\left((2.3762709571) \right)} + 9}{- \frac{1851 (2.3762709571)^{2}}{1000} - \sin{\left((2.3762709571) \right)}} = 2.3762649184 LaTeX:  x_{5} =  (2.3762649184) - \frac{- \frac{617 (2.3762649184)^{3}}{1000} + \cos{\left((2.3762649184) \right)} + 9}{- \frac{1851 (2.3762649184)^{2}}{1000} - \sin{\left((2.3762649184) \right)}} = 2.3762649184