Use Newton's method to find the first 5 approximations of the solution to the equation LaTeX:  \displaystyle \sin{\left(x \right)}= \frac{189 x^{3}}{1000} - 8 using LaTeX:  \displaystyle x_0=3 .

Using the formula for Newton's method gives LaTeX:  x_{n+1} =  x_{n} - \frac{- \frac{189 x_{n}^{3}}{1000} + \sin{\left(x_{n} \right)} + 8}{- \frac{567 x_{n}^{2}}{1000} + \cos{\left(x_{n} \right)}}   Using LaTeX:  \displaystyle x_0 = 3 and LaTeX:  \displaystyle n = 0,1,2,3, and LaTeX:  \displaystyle 4 gives: LaTeX:  x_{1} =  (3.0000000000) - \frac{- \frac{189 (3.0000000000)^{3}}{1000} + \sin{\left((3.0000000000) \right)} + 8}{- \frac{567 (3.0000000000)^{2}}{1000} + \cos{\left((3.0000000000) \right)}} = 3.4986252666 LaTeX:  x_{2} =  (3.4986252666) - \frac{- \frac{189 (3.4986252666)^{3}}{1000} + \sin{\left((3.4986252666) \right)} + 8}{- \frac{567 (3.4986252666)^{2}}{1000} + \cos{\left((3.4986252666) \right)}} = 3.4423458947 LaTeX:  x_{3} =  (3.4423458947) - \frac{- \frac{189 (3.4423458947)^{3}}{1000} + \sin{\left((3.4423458947) \right)} + 8}{- \frac{567 (3.4423458947)^{2}}{1000} + \cos{\left((3.4423458947) \right)}} = 3.4415999956 LaTeX:  x_{4} =  (3.4415999956) - \frac{- \frac{189 (3.4415999956)^{3}}{1000} + \sin{\left((3.4415999956) \right)} + 8}{- \frac{567 (3.4415999956)^{2}}{1000} + \cos{\left((3.4415999956) \right)}} = 3.4415998648 LaTeX:  x_{5} =  (3.4415998648) - \frac{- \frac{189 (3.4415998648)^{3}}{1000} + \sin{\left((3.4415998648) \right)} + 8}{- \frac{567 (3.4415998648)^{2}}{1000} + \cos{\left((3.4415998648) \right)}} = 3.4415998648