Use Newton's method to find the first 5 approximations of the solution to the equation LaTeX:  \displaystyle \sin{\left(x \right)}= \frac{161 x^{3}}{500} - 5 using LaTeX:  \displaystyle x_0=3 .

Using the formula for Newton's method gives LaTeX:  x_{n+1} =  x_{n} - \frac{- \frac{161 x_{n}^{3}}{500} + \sin{\left(x_{n} \right)} + 5}{- \frac{483 x_{n}^{2}}{500} + \cos{\left(x_{n} \right)}}   Using LaTeX:  \displaystyle x_0 = 3 and LaTeX:  \displaystyle n = 0,1,2,3, and LaTeX:  \displaystyle 4 gives: LaTeX:  x_{1} =  (3.0000000000) - \frac{- \frac{161 (3.0000000000)^{3}}{500} + \sin{\left((3.0000000000) \right)} + 5}{- \frac{483 (3.0000000000)^{2}}{500} + \cos{\left((3.0000000000) \right)}} = 2.6331182626 LaTeX:  x_{2} =  (2.6331182626) - \frac{- \frac{161 (2.6331182626)^{3}}{500} + \sin{\left((2.6331182626) \right)} + 5}{- \frac{483 (2.6331182626)^{2}}{500} + \cos{\left((2.6331182626) \right)}} = 2.5813870091 LaTeX:  x_{3} =  (2.5813870091) - \frac{- \frac{161 (2.5813870091)^{3}}{500} + \sin{\left((2.5813870091) \right)} + 5}{- \frac{483 (2.5813870091)^{2}}{500} + \cos{\left((2.5813870091) \right)}} = 2.5803664606 LaTeX:  x_{4} =  (2.5803664606) - \frac{- \frac{161 (2.5803664606)^{3}}{500} + \sin{\left((2.5803664606) \right)} + 5}{- \frac{483 (2.5803664606)^{2}}{500} + \cos{\left((2.5803664606) \right)}} = 2.5803660657 LaTeX:  x_{5} =  (2.5803660657) - \frac{- \frac{161 (2.5803660657)^{3}}{500} + \sin{\left((2.5803660657) \right)} + 5}{- \frac{483 (2.5803660657)^{2}}{500} + \cos{\left((2.5803660657) \right)}} = 2.5803660657