Use Newton's method to find the first 5 approximations of the solution to the equation LaTeX:  \displaystyle e^{- x}= \frac{461 x^{3}}{1000} - 5 using LaTeX:  \displaystyle x_0=3 .

Using the formula for Newton's method gives LaTeX:  x_{n+1} =  x_{n} - \frac{- \frac{461 x_{n}^{3}}{1000} + 5 + e^{- x_{n}}}{- \frac{1383 x_{n}^{2}}{1000} - e^{- x_{n}}}   Using LaTeX:  \displaystyle x_0 = 3 and LaTeX:  \displaystyle n = 0,1,2,3, and LaTeX:  \displaystyle 4 gives: LaTeX:  x_{1} =  (3.0000000000) - \frac{- \frac{461 (3.0000000000)^{3}}{1000} + 5 + e^{- (3.0000000000)}}{- \frac{1383 (3.0000000000)^{2}}{1000} - e^{- (3.0000000000)}} = 2.4080708192 LaTeX:  x_{2} =  (2.4080708192) - \frac{- \frac{461 (2.4080708192)^{3}}{1000} + 5 + e^{- (2.4080708192)}}{- \frac{1383 (2.4080708192)^{2}}{1000} - e^{- (2.4080708192)}} = 2.2419267567 LaTeX:  x_{3} =  (2.2419267567) - \frac{- \frac{461 (2.2419267567)^{3}}{1000} + 5 + e^{- (2.2419267567)}}{- \frac{1383 (2.2419267567)^{2}}{1000} - e^{- (2.2419267567)}} = 2.2293865742 LaTeX:  x_{4} =  (2.2293865742) - \frac{- \frac{461 (2.2293865742)^{3}}{1000} + 5 + e^{- (2.2293865742)}}{- \frac{1383 (2.2293865742)^{2}}{1000} - e^{- (2.2293865742)}} = 2.2293180647 LaTeX:  x_{5} =  (2.2293180647) - \frac{- \frac{461 (2.2293180647)^{3}}{1000} + 5 + e^{- (2.2293180647)}}{- \frac{1383 (2.2293180647)^{2}}{1000} - e^{- (2.2293180647)}} = 2.2293180626