Use Newton's method to find the first 5 approximations of the solution to the equation LaTeX:  \displaystyle \sin{\left(x \right)}= \frac{439 x^{3}}{1000} - 6 using LaTeX:  \displaystyle x_0=3 .

Using the formula for Newton's method gives LaTeX:  x_{n+1} =  x_{n} - \frac{- \frac{439 x_{n}^{3}}{1000} + \sin{\left(x_{n} \right)} + 6}{- \frac{1317 x_{n}^{2}}{1000} + \cos{\left(x_{n} \right)}}   Using LaTeX:  \displaystyle x_0 = 3 and LaTeX:  \displaystyle n = 0,1,2,3, and LaTeX:  \displaystyle 4 gives: LaTeX:  x_{1} =  (3.0000000000) - \frac{- \frac{439 (3.0000000000)^{3}}{1000} + \sin{\left((3.0000000000) \right)} + 6}{- \frac{1317 (3.0000000000)^{2}}{1000} + \cos{\left((3.0000000000) \right)}} = 2.5552531862 LaTeX:  x_{2} =  (2.5552531862) - \frac{- \frac{439 (2.5552531862)^{3}}{1000} + \sin{\left((2.5552531862) \right)} + 6}{- \frac{1317 (2.5552531862)^{2}}{1000} + \cos{\left((2.5552531862) \right)}} = 2.4735121949 LaTeX:  x_{3} =  (2.4735121949) - \frac{- \frac{439 (2.4735121949)^{3}}{1000} + \sin{\left((2.4735121949) \right)} + 6}{- \frac{1317 (2.4735121949)^{2}}{1000} + \cos{\left((2.4735121949) \right)}} = 2.4707790155 LaTeX:  x_{4} =  (2.4707790155) - \frac{- \frac{439 (2.4707790155)^{3}}{1000} + \sin{\left((2.4707790155) \right)} + 6}{- \frac{1317 (2.4707790155)^{2}}{1000} + \cos{\left((2.4707790155) \right)}} = 2.4707759959 LaTeX:  x_{5} =  (2.4707759959) - \frac{- \frac{439 (2.4707759959)^{3}}{1000} + \sin{\left((2.4707759959) \right)} + 6}{- \frac{1317 (2.4707759959)^{2}}{1000} + \cos{\left((2.4707759959) \right)}} = 2.4707759959