Use Newton's method to find the first 5 approximations of the solution to the equation LaTeX:  \displaystyle \cos{\left(x \right)}= \frac{7 x^{3}}{10} - 5 using LaTeX:  \displaystyle x_0=1 .

Using the formula for Newton's method gives LaTeX:  x_{n+1} =  x_{n} - \frac{- \frac{7 x_{n}^{3}}{10} + \cos{\left(x_{n} \right)} + 5}{- \frac{21 x_{n}^{2}}{10} - \sin{\left(x_{n} \right)}}   Using LaTeX:  \displaystyle x_0 = 1 and LaTeX:  \displaystyle n = 0,1,2,3, and LaTeX:  \displaystyle 4 gives: LaTeX:  x_{1} =  (1.0000000000) - \frac{- \frac{7 (1.0000000000)^{3}}{10} + \cos{\left((1.0000000000) \right)} + 5}{- \frac{21 (1.0000000000)^{2}}{10} - \sin{\left((1.0000000000) \right)}} = 2.6455380083 LaTeX:  x_{2} =  (2.6455380083) - \frac{- \frac{7 (2.6455380083)^{3}}{10} + \cos{\left((2.6455380083) \right)} + 5}{- \frac{21 (2.6455380083)^{2}}{10} - \sin{\left((2.6455380083) \right)}} = 2.0629129490 LaTeX:  x_{3} =  (2.0629129490) - \frac{- \frac{7 (2.0629129490)^{3}}{10} + \cos{\left((2.0629129490) \right)} + 5}{- \frac{21 (2.0629129490)^{2}}{10} - \sin{\left((2.0629129490) \right)}} = 1.8981400597 LaTeX:  x_{4} =  (1.8981400597) - \frac{- \frac{7 (1.8981400597)^{3}}{10} + \cos{\left((1.8981400597) \right)} + 5}{- \frac{21 (1.8981400597)^{2}}{10} - \sin{\left((1.8981400597) \right)}} = 1.8853664533 LaTeX:  x_{5} =  (1.8853664533) - \frac{- \frac{7 (1.8853664533)^{3}}{10} + \cos{\left((1.8853664533) \right)} + 5}{- \frac{21 (1.8853664533)^{2}}{10} - \sin{\left((1.8853664533) \right)}} = 1.8852924205