Use Newton's method to find the first 5 approximations of the solution to the equation LaTeX:  \displaystyle \sin{\left(x \right)}= \frac{49 x^{3}}{500} - 1 using LaTeX:  \displaystyle x_0=3 .

Using the formula for Newton's method gives LaTeX:  x_{n+1} =  x_{n} - \frac{- \frac{49 x_{n}^{3}}{500} + \sin{\left(x_{n} \right)} + 1}{- \frac{147 x_{n}^{2}}{500} + \cos{\left(x_{n} \right)}}   Using LaTeX:  \displaystyle x_0 = 3 and LaTeX:  \displaystyle n = 0,1,2,3, and LaTeX:  \displaystyle 4 gives: LaTeX:  x_{1} =  (3.0000000000) - \frac{- \frac{49 (3.0000000000)^{3}}{500} + \sin{\left((3.0000000000) \right)} + 1}{- \frac{147 (3.0000000000)^{2}}{500} + \cos{\left((3.0000000000) \right)}} = 2.5861157598 LaTeX:  x_{2} =  (2.5861157598) - \frac{- \frac{49 (2.5861157598)^{3}}{500} + \sin{\left((2.5861157598) \right)} + 1}{- \frac{147 (2.5861157598)^{2}}{500} + \cos{\left((2.5861157598) \right)}} = 2.5265783880 LaTeX:  x_{3} =  (2.5265783880) - \frac{- \frac{49 (2.5265783880)^{3}}{500} + \sin{\left((2.5265783880) \right)} + 1}{- \frac{147 (2.5265783880)^{2}}{500} + \cos{\left((2.5265783880) \right)}} = 2.5252275034 LaTeX:  x_{4} =  (2.5252275034) - \frac{- \frac{49 (2.5252275034)^{3}}{500} + \sin{\left((2.5252275034) \right)} + 1}{- \frac{147 (2.5252275034)^{2}}{500} + \cos{\left((2.5252275034) \right)}} = 2.5252268040 LaTeX:  x_{5} =  (2.5252268040) - \frac{- \frac{49 (2.5252268040)^{3}}{500} + \sin{\left((2.5252268040) \right)} + 1}{- \frac{147 (2.5252268040)^{2}}{500} + \cos{\left((2.5252268040) \right)}} = 2.5252268040