Use Newton's method to find the first 5 approximations of the solution to the equation LaTeX:  \displaystyle \cos{\left(x \right)}= \frac{13 x^{3}}{125} - 2 using LaTeX:  \displaystyle x_0=3 .

Using the formula for Newton's method gives LaTeX:  x_{n+1} =  x_{n} - \frac{- \frac{13 x_{n}^{3}}{125} + \cos{\left(x_{n} \right)} + 2}{- \frac{39 x_{n}^{2}}{125} - \sin{\left(x_{n} \right)}}   Using LaTeX:  \displaystyle x_0 = 3 and LaTeX:  \displaystyle n = 0,1,2,3, and LaTeX:  \displaystyle 4 gives: LaTeX:  x_{1} =  (3.0000000000) - \frac{- \frac{13 (3.0000000000)^{3}}{125} + \cos{\left((3.0000000000) \right)} + 2}{- \frac{39 (3.0000000000)^{2}}{125} - \sin{\left((3.0000000000) \right)}} = 2.3903291519 LaTeX:  x_{2} =  (2.3903291519) - \frac{- \frac{13 (2.3903291519)^{3}}{125} + \cos{\left((2.3903291519) \right)} + 2}{- \frac{39 (2.3903291519)^{2}}{125} - \sin{\left((2.3903291519) \right)}} = 2.3289907094 LaTeX:  x_{3} =  (2.3289907094) - \frac{- \frac{13 (2.3289907094)^{3}}{125} + \cos{\left((2.3289907094) \right)} + 2}{- \frac{39 (2.3289907094)^{2}}{125} - \sin{\left((2.3289907094) \right)}} = 2.3283978528 LaTeX:  x_{4} =  (2.3283978528) - \frac{- \frac{13 (2.3283978528)^{3}}{125} + \cos{\left((2.3283978528) \right)} + 2}{- \frac{39 (2.3283978528)^{2}}{125} - \sin{\left((2.3283978528) \right)}} = 2.3283977971 LaTeX:  x_{5} =  (2.3283977971) - \frac{- \frac{13 (2.3283977971)^{3}}{125} + \cos{\left((2.3283977971) \right)} + 2}{- \frac{39 (2.3283977971)^{2}}{125} - \sin{\left((2.3283977971) \right)}} = 2.3283977971