Use Newton's method to find the first 5 approximations of the solution to the equation LaTeX:  \displaystyle \sin{\left(x \right)}= \frac{249 x^{3}}{500} - 5 using LaTeX:  \displaystyle x_0=3 .

Using the formula for Newton's method gives LaTeX:  x_{n+1} =  x_{n} - \frac{- \frac{249 x_{n}^{3}}{500} + \sin{\left(x_{n} \right)} + 5}{- \frac{747 x_{n}^{2}}{500} + \cos{\left(x_{n} \right)}}   Using LaTeX:  \displaystyle x_0 = 3 and LaTeX:  \displaystyle n = 0,1,2,3, and LaTeX:  \displaystyle 4 gives: LaTeX:  x_{1} =  (3.0000000000) - \frac{- \frac{249 (3.0000000000)^{3}}{500} + \sin{\left((3.0000000000) \right)} + 5}{- \frac{747 (3.0000000000)^{2}}{500} + \cos{\left((3.0000000000) \right)}} = 2.4247101476 LaTeX:  x_{2} =  (2.4247101476) - \frac{- \frac{249 (2.4247101476)^{3}}{500} + \sin{\left((2.4247101476) \right)} + 5}{- \frac{747 (2.4247101476)^{2}}{500} + \cos{\left((2.4247101476) \right)}} = 2.2735000581 LaTeX:  x_{3} =  (2.2735000581) - \frac{- \frac{249 (2.2735000581)^{3}}{500} + \sin{\left((2.2735000581) \right)} + 5}{- \frac{747 (2.2735000581)^{2}}{500} + \cos{\left((2.2735000581) \right)}} = 2.2628605726 LaTeX:  x_{4} =  (2.2628605726) - \frac{- \frac{249 (2.2628605726)^{3}}{500} + \sin{\left((2.2628605726) \right)} + 5}{- \frac{747 (2.2628605726)^{2}}{500} + \cos{\left((2.2628605726) \right)}} = 2.2628090281 LaTeX:  x_{5} =  (2.2628090281) - \frac{- \frac{249 (2.2628090281)^{3}}{500} + \sin{\left((2.2628090281) \right)} + 5}{- \frac{747 (2.2628090281)^{2}}{500} + \cos{\left((2.2628090281) \right)}} = 2.2628090269