Use Newton's method to find the first 5 approximations of the solution to the equation LaTeX:  \displaystyle e^{- x}= \frac{163 x^{3}}{200} - 3 using LaTeX:  \displaystyle x_0=1 .

Using the formula for Newton's method gives LaTeX:  x_{n+1} =  x_{n} - \frac{- \frac{163 x_{n}^{3}}{200} + 3 + e^{- x_{n}}}{- \frac{489 x_{n}^{2}}{200} - e^{- x_{n}}}   Using LaTeX:  \displaystyle x_0 = 1 and LaTeX:  \displaystyle n = 0,1,2,3, and LaTeX:  \displaystyle 4 gives: LaTeX:  x_{1} =  (1.0000000000) - \frac{- \frac{163 (1.0000000000)^{3}}{200} + 3 + e^{- (1.0000000000)}}{- \frac{489 (1.0000000000)^{2}}{200} - e^{- (1.0000000000)}} = 1.9075680258 LaTeX:  x_{2} =  (1.9075680258) - \frac{- \frac{163 (1.9075680258)^{3}}{200} + 3 + e^{- (1.9075680258)}}{- \frac{489 (1.9075680258)^{2}}{200} - e^{- (1.9075680258)}} = 1.6302199391 LaTeX:  x_{3} =  (1.6302199391) - \frac{- \frac{163 (1.6302199391)^{3}}{200} + 3 + e^{- (1.6302199391)}}{- \frac{489 (1.6302199391)^{2}}{200} - e^{- (1.6302199391)}} = 1.5801582019 LaTeX:  x_{4} =  (1.5801582019) - \frac{- \frac{163 (1.5801582019)^{3}}{200} + 3 + e^{- (1.5801582019)}}{- \frac{489 (1.5801582019)^{2}}{200} - e^{- (1.5801582019)}} = 1.5786310766 LaTeX:  x_{5} =  (1.5786310766) - \frac{- \frac{163 (1.5786310766)^{3}}{200} + 3 + e^{- (1.5786310766)}}{- \frac{489 (1.5786310766)^{2}}{200} - e^{- (1.5786310766)}} = 1.5786296849