Use Newton's method to find the first 5 approximations of the solution to the equation LaTeX:  \displaystyle \cos{\left(x \right)}= \frac{113 x^{3}}{125} - 2 using LaTeX:  \displaystyle x_0=1 .

Using the formula for Newton's method gives LaTeX:  x_{n+1} =  x_{n} - \frac{- \frac{113 x_{n}^{3}}{125} + \cos{\left(x_{n} \right)} + 2}{- \frac{339 x_{n}^{2}}{125} - \sin{\left(x_{n} \right)}}   Using LaTeX:  \displaystyle x_0 = 1 and LaTeX:  \displaystyle n = 0,1,2,3, and LaTeX:  \displaystyle 4 gives: LaTeX:  x_{1} =  (1.0000000000) - \frac{- \frac{113 (1.0000000000)^{3}}{125} + \cos{\left((1.0000000000) \right)} + 2}{- \frac{339 (1.0000000000)^{2}}{125} - \sin{\left((1.0000000000) \right)}} = 1.4604799963 LaTeX:  x_{2} =  (1.4604799963) - \frac{- \frac{113 (1.4604799963)^{3}}{125} + \cos{\left((1.4604799963) \right)} + 2}{- \frac{339 (1.4604799963)^{2}}{125} - \sin{\left((1.4604799963) \right)}} = 1.3563210794 LaTeX:  x_{3} =  (1.3563210794) - \frac{- \frac{113 (1.3563210794)^{3}}{125} + \cos{\left((1.3563210794) \right)} + 2}{- \frac{339 (1.3563210794)^{2}}{125} - \sin{\left((1.3563210794) \right)}} = 1.3491583657 LaTeX:  x_{4} =  (1.3491583657) - \frac{- \frac{113 (1.3491583657)^{3}}{125} + \cos{\left((1.3491583657) \right)} + 2}{- \frac{339 (1.3491583657)^{2}}{125} - \sin{\left((1.3491583657) \right)}} = 1.3491255675 LaTeX:  x_{5} =  (1.3491255675) - \frac{- \frac{113 (1.3491255675)^{3}}{125} + \cos{\left((1.3491255675) \right)} + 2}{- \frac{339 (1.3491255675)^{2}}{125} - \sin{\left((1.3491255675) \right)}} = 1.3491255669