Use Newton's method to find the first 5 approximations of the solution to the equation LaTeX:  \displaystyle \sin{\left(x \right)}= \frac{3 x^{3}}{250} - 7 using LaTeX:  \displaystyle x_0=9 .

Using the formula for Newton's method gives LaTeX:  x_{n+1} =  x_{n} - \frac{- \frac{3 x_{n}^{3}}{250} + \sin{\left(x_{n} \right)} + 7}{- \frac{9 x_{n}^{2}}{250} + \cos{\left(x_{n} \right)}}   Using LaTeX:  \displaystyle x_0 = 9 and LaTeX:  \displaystyle n = 0,1,2,3, and LaTeX:  \displaystyle 4 gives: LaTeX:  x_{1} =  (9.0000000000) - \frac{- \frac{3 (9.0000000000)^{3}}{250} + \sin{\left((9.0000000000) \right)} + 7}{- \frac{9 (9.0000000000)^{2}}{250} + \cos{\left((9.0000000000) \right)}} = 8.6509443308 LaTeX:  x_{2} =  (8.6509443308) - \frac{- \frac{3 (8.6509443308)^{3}}{250} + \sin{\left((8.6509443308) \right)} + 7}{- \frac{9 (8.6509443308)^{2}}{250} + \cos{\left((8.6509443308) \right)}} = 8.6303435217 LaTeX:  x_{3} =  (8.6303435217) - \frac{- \frac{3 (8.6303435217)^{3}}{250} + \sin{\left((8.6303435217) \right)} + 7}{- \frac{9 (8.6303435217)^{2}}{250} + \cos{\left((8.6303435217) \right)}} = 8.6302603173 LaTeX:  x_{4} =  (8.6302603173) - \frac{- \frac{3 (8.6302603173)^{3}}{250} + \sin{\left((8.6302603173) \right)} + 7}{- \frac{9 (8.6302603173)^{2}}{250} + \cos{\left((8.6302603173) \right)}} = 8.6302603159 LaTeX:  x_{5} =  (8.6302603159) - \frac{- \frac{3 (8.6302603159)^{3}}{250} + \sin{\left((8.6302603159) \right)} + 7}{- \frac{9 (8.6302603159)^{2}}{250} + \cos{\left((8.6302603159) \right)}} = 8.6302603159