Use Newton's method to find the first 5 approximations of the solution to the equation LaTeX:  \displaystyle \sin{\left(x \right)}= \frac{4 x^{3}}{25} - 2 using LaTeX:  \displaystyle x_0=3 .

Using the formula for Newton's method gives LaTeX:  x_{n+1} =  x_{n} - \frac{- \frac{4 x_{n}^{3}}{25} + \sin{\left(x_{n} \right)} + 2}{- \frac{12 x_{n}^{2}}{25} + \cos{\left(x_{n} \right)}}   Using LaTeX:  \displaystyle x_0 = 3 and LaTeX:  \displaystyle n = 0,1,2,3, and LaTeX:  \displaystyle 4 gives: LaTeX:  x_{1} =  (3.0000000000) - \frac{- \frac{4 (3.0000000000)^{3}}{25} + \sin{\left((3.0000000000) \right)} + 2}{- \frac{12 (3.0000000000)^{2}}{25} + \cos{\left((3.0000000000) \right)}} = 2.5896642051 LaTeX:  x_{2} =  (2.5896642051) - \frac{- \frac{4 (2.5896642051)^{3}}{25} + \sin{\left((2.5896642051) \right)} + 2}{- \frac{12 (2.5896642051)^{2}}{25} + \cos{\left((2.5896642051) \right)}} = 2.5271605824 LaTeX:  x_{3} =  (2.5271605824) - \frac{- \frac{4 (2.5271605824)^{3}}{25} + \sin{\left((2.5271605824) \right)} + 2}{- \frac{12 (2.5271605824)^{2}}{25} + \cos{\left((2.5271605824) \right)}} = 2.5256472747 LaTeX:  x_{4} =  (2.5256472747) - \frac{- \frac{4 (2.5256472747)^{3}}{25} + \sin{\left((2.5256472747) \right)} + 2}{- \frac{12 (2.5256472747)^{2}}{25} + \cos{\left((2.5256472747) \right)}} = 2.5256463882 LaTeX:  x_{5} =  (2.5256463882) - \frac{- \frac{4 (2.5256463882)^{3}}{25} + \sin{\left((2.5256463882) \right)} + 2}{- \frac{12 (2.5256463882)^{2}}{25} + \cos{\left((2.5256463882) \right)}} = 2.5256463882