Use Newton's method to find the first 5 approximations of the solution to the equation LaTeX:  \displaystyle \cos{\left(x \right)}= \frac{57 x^{3}}{500} - 5 using LaTeX:  \displaystyle x_0=3 .

Using the formula for Newton's method gives LaTeX:  x_{n+1} =  x_{n} - \frac{- \frac{57 x_{n}^{3}}{500} + \cos{\left(x_{n} \right)} + 5}{- \frac{171 x_{n}^{2}}{500} - \sin{\left(x_{n} \right)}}   Using LaTeX:  \displaystyle x_0 = 3 and LaTeX:  \displaystyle n = 0,1,2,3, and LaTeX:  \displaystyle 4 gives: LaTeX:  x_{1} =  (3.0000000000) - \frac{- \frac{57 (3.0000000000)^{3}}{500} + \cos{\left((3.0000000000) \right)} + 5}{- \frac{171 (3.0000000000)^{2}}{500} - \sin{\left((3.0000000000) \right)}} = 3.2895224475 LaTeX:  x_{2} =  (3.2895224475) - \frac{- \frac{57 (3.2895224475)^{3}}{500} + \cos{\left((3.2895224475) \right)} + 5}{- \frac{171 (3.2895224475)^{2}}{500} - \sin{\left((3.2895224475) \right)}} = 3.2762962381 LaTeX:  x_{3} =  (3.2762962381) - \frac{- \frac{57 (3.2762962381)^{3}}{500} + \cos{\left((3.2762962381) \right)} + 5}{- \frac{171 (3.2762962381)^{2}}{500} - \sin{\left((3.2762962381) \right)}} = 3.2762651442 LaTeX:  x_{4} =  (3.2762651442) - \frac{- \frac{57 (3.2762651442)^{3}}{500} + \cos{\left((3.2762651442) \right)} + 5}{- \frac{171 (3.2762651442)^{2}}{500} - \sin{\left((3.2762651442) \right)}} = 3.2762651441 LaTeX:  x_{5} =  (3.2762651441) - \frac{- \frac{57 (3.2762651441)^{3}}{500} + \cos{\left((3.2762651441) \right)} + 5}{- \frac{171 (3.2762651441)^{2}}{500} - \sin{\left((3.2762651441) \right)}} = 3.2762651441