Use Newton's method to find the first 5 approximations of the solution to the equation LaTeX:  \displaystyle e^{- x}= \frac{102 x^{3}}{125} - 7 using LaTeX:  \displaystyle x_0=3 .

Using the formula for Newton's method gives LaTeX:  x_{n+1} =  x_{n} - \frac{- \frac{102 x_{n}^{3}}{125} + 7 + e^{- x_{n}}}{- \frac{306 x_{n}^{2}}{125} - e^{- x_{n}}}   Using LaTeX:  \displaystyle x_0 = 3 and LaTeX:  \displaystyle n = 0,1,2,3, and LaTeX:  \displaystyle 4 gives: LaTeX:  x_{1} =  (3.0000000000) - \frac{- \frac{102 (3.0000000000)^{3}}{125} + 7 + e^{- (3.0000000000)}}{- \frac{306 (3.0000000000)^{2}}{125} - e^{- (3.0000000000)}} = 2.3215126618 LaTeX:  x_{2} =  (2.3215126618) - \frac{- \frac{102 (2.3215126618)^{3}}{125} + 7 + e^{- (2.3215126618)}}{- \frac{306 (2.3215126618)^{2}}{125} - e^{- (2.3215126618)}} = 2.0874258422 LaTeX:  x_{3} =  (2.0874258422) - \frac{- \frac{102 (2.0874258422)^{3}}{125} + 7 + e^{- (2.0874258422)}}{- \frac{306 (2.0874258422)^{2}}{125} - e^{- (2.0874258422)}} = 2.0598064879 LaTeX:  x_{4} =  (2.0598064879) - \frac{- \frac{102 (2.0598064879)^{3}}{125} + 7 + e^{- (2.0598064879)}}{- \frac{306 (2.0598064879)^{2}}{125} - e^{- (2.0598064879)}} = 2.0594419081 LaTeX:  x_{5} =  (2.0594419081) - \frac{- \frac{102 (2.0594419081)^{3}}{125} + 7 + e^{- (2.0594419081)}}{- \frac{306 (2.0594419081)^{2}}{125} - e^{- (2.0594419081)}} = 2.0594418452