Use Newton's method to find the first 5 approximations of the solution to the equation LaTeX:  \displaystyle \sin{\left(x \right)}= \frac{537 x^{3}}{1000} - 8 using LaTeX:  \displaystyle x_0=3 .

Using the formula for Newton's method gives LaTeX:  x_{n+1} =  x_{n} - \frac{- \frac{537 x_{n}^{3}}{1000} + \sin{\left(x_{n} \right)} + 8}{- \frac{1611 x_{n}^{2}}{1000} + \cos{\left(x_{n} \right)}}   Using LaTeX:  \displaystyle x_0 = 3 and LaTeX:  \displaystyle n = 0,1,2,3, and LaTeX:  \displaystyle 4 gives: LaTeX:  x_{1} =  (3.0000000000) - \frac{- \frac{537 (3.0000000000)^{3}}{1000} + \sin{\left((3.0000000000) \right)} + 8}{- \frac{1611 (3.0000000000)^{2}}{1000} + \cos{\left((3.0000000000) \right)}} = 2.5895226889 LaTeX:  x_{2} =  (2.5895226889) - \frac{- \frac{537 (2.5895226889)^{3}}{1000} + \sin{\left((2.5895226889) \right)} + 8}{- \frac{1611 (2.5895226889)^{2}}{1000} + \cos{\left((2.5895226889) \right)}} = 2.5208591853 LaTeX:  x_{3} =  (2.5208591853) - \frac{- \frac{537 (2.5208591853)^{3}}{1000} + \sin{\left((2.5208591853) \right)} + 8}{- \frac{1611 (2.5208591853)^{2}}{1000} + \cos{\left((2.5208591853) \right)}} = 2.5189791411 LaTeX:  x_{4} =  (2.5189791411) - \frac{- \frac{537 (2.5189791411)^{3}}{1000} + \sin{\left((2.5189791411) \right)} + 8}{- \frac{1611 (2.5189791411)^{2}}{1000} + \cos{\left((2.5189791411) \right)}} = 2.5189777473 LaTeX:  x_{5} =  (2.5189777473) - \frac{- \frac{537 (2.5189777473)^{3}}{1000} + \sin{\left((2.5189777473) \right)} + 8}{- \frac{1611 (2.5189777473)^{2}}{1000} + \cos{\left((2.5189777473) \right)}} = 2.5189777473