Use Newton's method to find the first 5 approximations of the solution to the equation LaTeX:  \displaystyle \sin{\left(x \right)}= \frac{43 x^{3}}{200} - 8 using LaTeX:  \displaystyle x_0=3 .

Using the formula for Newton's method gives LaTeX:  x_{n+1} =  x_{n} - \frac{- \frac{43 x_{n}^{3}}{200} + \sin{\left(x_{n} \right)} + 8}{- \frac{129 x_{n}^{2}}{200} + \cos{\left(x_{n} \right)}}   Using LaTeX:  \displaystyle x_0 = 3 and LaTeX:  \displaystyle n = 0,1,2,3, and LaTeX:  \displaystyle 4 gives: LaTeX:  x_{1} =  (3.0000000000) - \frac{- \frac{43 (3.0000000000)^{3}}{200} + \sin{\left((3.0000000000) \right)} + 8}{- \frac{129 (3.0000000000)^{2}}{200} + \cos{\left((3.0000000000) \right)}} = 3.3438002337 LaTeX:  x_{2} =  (3.3438002337) - \frac{- \frac{43 (3.3438002337)^{3}}{200} + \sin{\left((3.3438002337) \right)} + 8}{- \frac{129 (3.3438002337)^{2}}{200} + \cos{\left((3.3438002337) \right)}} = 3.3146178206 LaTeX:  x_{3} =  (3.3146178206) - \frac{- \frac{43 (3.3146178206)^{3}}{200} + \sin{\left((3.3146178206) \right)} + 8}{- \frac{129 (3.3146178206)^{2}}{200} + \cos{\left((3.3146178206) \right)}} = 3.3144010175 LaTeX:  x_{4} =  (3.3144010175) - \frac{- \frac{43 (3.3144010175)^{3}}{200} + \sin{\left((3.3144010175) \right)} + 8}{- \frac{129 (3.3144010175)^{2}}{200} + \cos{\left((3.3144010175) \right)}} = 3.3144010056 LaTeX:  x_{5} =  (3.3144010056) - \frac{- \frac{43 (3.3144010056)^{3}}{200} + \sin{\left((3.3144010056) \right)} + 8}{- \frac{129 (3.3144010056)^{2}}{200} + \cos{\left((3.3144010056) \right)}} = 3.3144010056