Use Newton's method to find the first 5 approximations of the solution to the equation LaTeX:  \displaystyle \cos{\left(x \right)}= \frac{133 x^{3}}{500} - 5 using LaTeX:  \displaystyle x_0=3 .

Using the formula for Newton's method gives LaTeX:  x_{n+1} =  x_{n} - \frac{- \frac{133 x_{n}^{3}}{500} + \cos{\left(x_{n} \right)} + 5}{- \frac{399 x_{n}^{2}}{500} - \sin{\left(x_{n} \right)}}   Using LaTeX:  \displaystyle x_0 = 3 and LaTeX:  \displaystyle n = 0,1,2,3, and LaTeX:  \displaystyle 4 gives: LaTeX:  x_{1} =  (3.0000000000) - \frac{- \frac{133 (3.0000000000)^{3}}{500} + \cos{\left((3.0000000000) \right)} + 5}{- \frac{399 (3.0000000000)^{2}}{500} - \sin{\left((3.0000000000) \right)}} = 2.5668523125 LaTeX:  x_{2} =  (2.5668523125) - \frac{- \frac{133 (2.5668523125)^{3}}{500} + \cos{\left((2.5668523125) \right)} + 5}{- \frac{399 (2.5668523125)^{2}}{500} - \sin{\left((2.5668523125) \right)}} = 2.5085898955 LaTeX:  x_{3} =  (2.5085898955) - \frac{- \frac{133 (2.5085898955)^{3}}{500} + \cos{\left((2.5085898955) \right)} + 5}{- \frac{399 (2.5085898955)^{2}}{500} - \sin{\left((2.5085898955) \right)}} = 2.5076111154 LaTeX:  x_{4} =  (2.5076111154) - \frac{- \frac{133 (2.5076111154)^{3}}{500} + \cos{\left((2.5076111154) \right)} + 5}{- \frac{399 (2.5076111154)^{2}}{500} - \sin{\left((2.5076111154) \right)}} = 2.5076108424 LaTeX:  x_{5} =  (2.5076108424) - \frac{- \frac{133 (2.5076108424)^{3}}{500} + \cos{\left((2.5076108424) \right)} + 5}{- \frac{399 (2.5076108424)^{2}}{500} - \sin{\left((2.5076108424) \right)}} = 2.5076108424