Use Newton's method to find the first 5 approximations of the solution to the equation LaTeX:  \displaystyle \cos{\left(x \right)}= \frac{569 x^{3}}{1000} - 1 using LaTeX:  \displaystyle x_0=1 .

Using the formula for Newton's method gives LaTeX:  x_{n+1} =  x_{n} - \frac{- \frac{569 x_{n}^{3}}{1000} + \cos{\left(x_{n} \right)} + 1}{- \frac{1707 x_{n}^{2}}{1000} - \sin{\left(x_{n} \right)}}   Using LaTeX:  \displaystyle x_0 = 1 and LaTeX:  \displaystyle n = 0,1,2,3, and LaTeX:  \displaystyle 4 gives: LaTeX:  x_{1} =  (1.0000000000) - \frac{- \frac{569 (1.0000000000)^{3}}{1000} + \cos{\left((1.0000000000) \right)} + 1}{- \frac{1707 (1.0000000000)^{2}}{1000} - \sin{\left((1.0000000000) \right)}} = 1.3811313967 LaTeX:  x_{2} =  (1.3811313967) - \frac{- \frac{569 (1.3811313967)^{3}}{1000} + \cos{\left((1.3811313967) \right)} + 1}{- \frac{1707 (1.3811313967)^{2}}{1000} - \sin{\left((1.3811313967) \right)}} = 1.3078636642 LaTeX:  x_{3} =  (1.3078636642) - \frac{- \frac{569 (1.3078636642)^{3}}{1000} + \cos{\left((1.3078636642) \right)} + 1}{- \frac{1707 (1.3078636642)^{2}}{1000} - \sin{\left((1.3078636642) \right)}} = 1.3045172730 LaTeX:  x_{4} =  (1.3045172730) - \frac{- \frac{569 (1.3045172730)^{3}}{1000} + \cos{\left((1.3045172730) \right)} + 1}{- \frac{1707 (1.3045172730)^{2}}{1000} - \sin{\left((1.3045172730) \right)}} = 1.3045104402 LaTeX:  x_{5} =  (1.3045104402) - \frac{- \frac{569 (1.3045104402)^{3}}{1000} + \cos{\left((1.3045104402) \right)} + 1}{- \frac{1707 (1.3045104402)^{2}}{1000} - \sin{\left((1.3045104402) \right)}} = 1.3045104402