Use Newton's method to find the first 5 approximations of the solution to the equation LaTeX:  \displaystyle e^{- x}= \frac{647 x^{3}}{1000} - 1 using LaTeX:  \displaystyle x_0=1 .

Using the formula for Newton's method gives LaTeX:  x_{n+1} =  x_{n} - \frac{- \frac{647 x_{n}^{3}}{1000} + 1 + e^{- x_{n}}}{- \frac{1941 x_{n}^{2}}{1000} - e^{- x_{n}}}   Using LaTeX:  \displaystyle x_0 = 1 and LaTeX:  \displaystyle n = 0,1,2,3, and LaTeX:  \displaystyle 4 gives: LaTeX:  x_{1} =  (1.0000000000) - \frac{- \frac{647 (1.0000000000)^{3}}{1000} + 1 + e^{- (1.0000000000)}}{- \frac{1941 (1.0000000000)^{2}}{1000} - e^{- (1.0000000000)}} = 1.3122204773 LaTeX:  x_{2} =  (1.3122204773) - \frac{- \frac{647 (1.3122204773)^{3}}{1000} + 1 + e^{- (1.3122204773)}}{- \frac{1941 (1.3122204773)^{2}}{1000} - e^{- (1.3122204773)}} = 1.2588621631 LaTeX:  x_{3} =  (1.2588621631) - \frac{- \frac{647 (1.2588621631)^{3}}{1000} + 1 + e^{- (1.2588621631)}}{- \frac{1941 (1.2588621631)^{2}}{1000} - e^{- (1.2588621631)}} = 1.2568492749 LaTeX:  x_{4} =  (1.2568492749) - \frac{- \frac{647 (1.2568492749)^{3}}{1000} + 1 + e^{- (1.2568492749)}}{- \frac{1941 (1.2568492749)^{2}}{1000} - e^{- (1.2568492749)}} = 1.2568464936 LaTeX:  x_{5} =  (1.2568464936) - \frac{- \frac{647 (1.2568464936)^{3}}{1000} + 1 + e^{- (1.2568464936)}}{- \frac{1941 (1.2568464936)^{2}}{1000} - e^{- (1.2568464936)}} = 1.2568464936