Use Newton's method to find the first 5 approximations of the solution to the equation LaTeX:  \displaystyle e^{- x}= \frac{971 x^{3}}{1000} - 7 using LaTeX:  \displaystyle x_0=1 .

Using the formula for Newton's method gives LaTeX:  x_{n+1} =  x_{n} - \frac{- \frac{971 x_{n}^{3}}{1000} + 7 + e^{- x_{n}}}{- \frac{2913 x_{n}^{2}}{1000} - e^{- x_{n}}}   Using LaTeX:  \displaystyle x_0 = 1 and LaTeX:  \displaystyle n = 0,1,2,3, and LaTeX:  \displaystyle 4 gives: LaTeX:  x_{1} =  (1.0000000000) - \frac{- \frac{971 (1.0000000000)^{3}}{1000} + 7 + e^{- (1.0000000000)}}{- \frac{2913 (1.0000000000)^{2}}{1000} - e^{- (1.0000000000)}} = 2.9497453521 LaTeX:  x_{2} =  (2.9497453521) - \frac{- \frac{971 (2.9497453521)^{3}}{1000} + 7 + e^{- (2.9497453521)}}{- \frac{2913 (2.9497453521)^{2}}{1000} - e^{- (2.9497453521)}} = 2.2461932798 LaTeX:  x_{3} =  (2.2461932798) - \frac{- \frac{971 (2.2461932798)^{3}}{1000} + 7 + e^{- (2.2461932798)}}{- \frac{2913 (2.2461932798)^{2}}{1000} - e^{- (2.2461932798)}} = 1.9828377987 LaTeX:  x_{4} =  (1.9828377987) - \frac{- \frac{971 (1.9828377987)^{3}}{1000} + 7 + e^{- (1.9828377987)}}{- \frac{2913 (1.9828377987)^{2}}{1000} - e^{- (1.9828377987)}} = 1.9455609921 LaTeX:  x_{5} =  (1.9455609921) - \frac{- \frac{971 (1.9455609921)^{3}}{1000} + 7 + e^{- (1.9455609921)}}{- \frac{2913 (1.9455609921)^{2}}{1000} - e^{- (1.9455609921)}} = 1.9448555749