Use Newton's method to find the first 5 approximations of the solution to the equation LaTeX:  \displaystyle e^{- x}= \frac{613 x^{3}}{1000} - 6 using LaTeX:  \displaystyle x_0=3 .

Using the formula for Newton's method gives LaTeX:  x_{n+1} =  x_{n} - \frac{- \frac{613 x_{n}^{3}}{1000} + 6 + e^{- x_{n}}}{- \frac{1839 x_{n}^{2}}{1000} - e^{- x_{n}}}   Using LaTeX:  \displaystyle x_0 = 3 and LaTeX:  \displaystyle n = 0,1,2,3, and LaTeX:  \displaystyle 4 gives: LaTeX:  x_{1} =  (3.0000000000) - \frac{- \frac{613 (3.0000000000)^{3}}{1000} + 6 + e^{- (3.0000000000)}}{- \frac{1839 (3.0000000000)^{2}}{1000} - e^{- (3.0000000000)}} = 2.3674268040 LaTeX:  x_{2} =  (2.3674268040) - \frac{- \frac{613 (2.3674268040)^{3}}{1000} + 6 + e^{- (2.3674268040)}}{- \frac{1839 (2.3674268040)^{2}}{1000} - e^{- (2.3674268040)}} = 2.1712861819 LaTeX:  x_{3} =  (2.1712861819) - \frac{- \frac{613 (2.1712861819)^{3}}{1000} + 6 + e^{- (2.1712861819)}}{- \frac{1839 (2.1712861819)^{2}}{1000} - e^{- (2.1712861819)}} = 2.1529642173 LaTeX:  x_{4} =  (2.1529642173) - \frac{- \frac{613 (2.1529642173)^{3}}{1000} + 6 + e^{- (2.1529642173)}}{- \frac{1839 (2.1529642173)^{2}}{1000} - e^{- (2.1529642173)}} = 2.1528117472 LaTeX:  x_{5} =  (2.1528117472) - \frac{- \frac{613 (2.1528117472)^{3}}{1000} + 6 + e^{- (2.1528117472)}}{- \frac{1839 (2.1528117472)^{2}}{1000} - e^{- (2.1528117472)}} = 2.1528117367