Use Newton's method to find the first 5 approximations of the solution to the equation LaTeX:  \displaystyle \sin{\left(x \right)}= \frac{31 x^{3}}{200} - 4 using LaTeX:  \displaystyle x_0=3 .

Using the formula for Newton's method gives LaTeX:  x_{n+1} =  x_{n} - \frac{- \frac{31 x_{n}^{3}}{200} + \sin{\left(x_{n} \right)} + 4}{- \frac{93 x_{n}^{2}}{200} + \cos{\left(x_{n} \right)}}   Using LaTeX:  \displaystyle x_0 = 3 and LaTeX:  \displaystyle n = 0,1,2,3, and LaTeX:  \displaystyle 4 gives: LaTeX:  x_{1} =  (3.0000000000) - \frac{- \frac{31 (3.0000000000)^{3}}{200} + \sin{\left((3.0000000000) \right)} + 4}{- \frac{93 (3.0000000000)^{2}}{200} + \cos{\left((3.0000000000) \right)}} = 2.9915207622 LaTeX:  x_{2} =  (2.9915207622) - \frac{- \frac{31 (2.9915207622)^{3}}{200} + \sin{\left((2.9915207622) \right)} + 4}{- \frac{93 (2.9915207622)^{2}}{200} + \cos{\left((2.9915207622) \right)}} = 2.9915003014 LaTeX:  x_{3} =  (2.9915003014) - \frac{- \frac{31 (2.9915003014)^{3}}{200} + \sin{\left((2.9915003014) \right)} + 4}{- \frac{93 (2.9915003014)^{2}}{200} + \cos{\left((2.9915003014) \right)}} = 2.9915003013 LaTeX:  x_{4} =  (2.9915003013) - \frac{- \frac{31 (2.9915003013)^{3}}{200} + \sin{\left((2.9915003013) \right)} + 4}{- \frac{93 (2.9915003013)^{2}}{200} + \cos{\left((2.9915003013) \right)}} = 2.9915003013 LaTeX:  x_{5} =  (2.9915003013) - \frac{- \frac{31 (2.9915003013)^{3}}{200} + \sin{\left((2.9915003013) \right)} + 4}{- \frac{93 (2.9915003013)^{2}}{200} + \cos{\left((2.9915003013) \right)}} = 2.9915003013