Use Newton's method to find the first 5 approximations of the solution to the equation LaTeX:  \displaystyle \sin{\left(x \right)}= \frac{89 x^{3}}{200} - 8 using LaTeX:  \displaystyle x_0=3 .

Using the formula for Newton's method gives LaTeX:  x_{n+1} =  x_{n} - \frac{- \frac{89 x_{n}^{3}}{200} + \sin{\left(x_{n} \right)} + 8}{- \frac{267 x_{n}^{2}}{200} + \cos{\left(x_{n} \right)}}   Using LaTeX:  \displaystyle x_0 = 3 and LaTeX:  \displaystyle n = 0,1,2,3, and LaTeX:  \displaystyle 4 gives: LaTeX:  x_{1} =  (3.0000000000) - \frac{- \frac{89 (3.0000000000)^{3}}{200} + \sin{\left((3.0000000000) \right)} + 8}{- \frac{267 (3.0000000000)^{2}}{200} + \cos{\left((3.0000000000) \right)}} = 2.7021236273 LaTeX:  x_{2} =  (2.7021236273) - \frac{- \frac{89 (2.7021236273)^{3}}{200} + \sin{\left((2.7021236273) \right)} + 8}{- \frac{267 (2.7021236273)^{2}}{200} + \cos{\left((2.7021236273) \right)}} = 2.6688768204 LaTeX:  x_{3} =  (2.6688768204) - \frac{- \frac{89 (2.6688768204)^{3}}{200} + \sin{\left((2.6688768204) \right)} + 8}{- \frac{267 (2.6688768204)^{2}}{200} + \cos{\left((2.6688768204) \right)}} = 2.6684718286 LaTeX:  x_{4} =  (2.6684718286) - \frac{- \frac{89 (2.6684718286)^{3}}{200} + \sin{\left((2.6684718286) \right)} + 8}{- \frac{267 (2.6684718286)^{2}}{200} + \cos{\left((2.6684718286) \right)}} = 2.6684717688 LaTeX:  x_{5} =  (2.6684717688) - \frac{- \frac{89 (2.6684717688)^{3}}{200} + \sin{\left((2.6684717688) \right)} + 8}{- \frac{267 (2.6684717688)^{2}}{200} + \cos{\left((2.6684717688) \right)}} = 2.6684717688