Use Newton's method to find the first 5 approximations of the solution to the equation LaTeX:  \displaystyle \cos{\left(x \right)}= \frac{413 x^{3}}{1000} - 9 using LaTeX:  \displaystyle x_0=3 .

Using the formula for Newton's method gives LaTeX:  x_{n+1} =  x_{n} - \frac{- \frac{413 x_{n}^{3}}{1000} + \cos{\left(x_{n} \right)} + 9}{- \frac{1239 x_{n}^{2}}{1000} - \sin{\left(x_{n} \right)}}   Using LaTeX:  \displaystyle x_0 = 3 and LaTeX:  \displaystyle n = 0,1,2,3, and LaTeX:  \displaystyle 4 gives: LaTeX:  x_{1} =  (3.0000000000) - \frac{- \frac{413 (3.0000000000)^{3}}{1000} + \cos{\left((3.0000000000) \right)} + 9}{- \frac{1239 (3.0000000000)^{2}}{1000} - \sin{\left((3.0000000000) \right)}} = 2.7218420904 LaTeX:  x_{2} =  (2.7218420904) - \frac{- \frac{413 (2.7218420904)^{3}}{1000} + \cos{\left((2.7218420904) \right)} + 9}{- \frac{1239 (2.7218420904)^{2}}{1000} - \sin{\left((2.7218420904) \right)}} = 2.6966866478 LaTeX:  x_{3} =  (2.6966866478) - \frac{- \frac{413 (2.6966866478)^{3}}{1000} + \cos{\left((2.6966866478) \right)} + 9}{- \frac{1239 (2.6966866478)^{2}}{1000} - \sin{\left((2.6966866478) \right)}} = 2.6964917849 LaTeX:  x_{4} =  (2.6964917849) - \frac{- \frac{413 (2.6964917849)^{3}}{1000} + \cos{\left((2.6964917849) \right)} + 9}{- \frac{1239 (2.6964917849)^{2}}{1000} - \sin{\left((2.6964917849) \right)}} = 2.6964917733 LaTeX:  x_{5} =  (2.6964917733) - \frac{- \frac{413 (2.6964917733)^{3}}{1000} + \cos{\left((2.6964917733) \right)} + 9}{- \frac{1239 (2.6964917733)^{2}}{1000} - \sin{\left((2.6964917733) \right)}} = 2.6964917733