Use Newton's method to find the first 5 approximations of the solution to the equation LaTeX:  \displaystyle \sin{\left(x \right)}= \frac{13 x^{3}}{100} - 5 using LaTeX:  \displaystyle x_0=3 .

Using the formula for Newton's method gives LaTeX:  x_{n+1} =  x_{n} - \frac{- \frac{13 x_{n}^{3}}{100} + \sin{\left(x_{n} \right)} + 5}{- \frac{39 x_{n}^{2}}{100} + \cos{\left(x_{n} \right)}}   Using LaTeX:  \displaystyle x_0 = 3 and LaTeX:  \displaystyle n = 0,1,2,3, and LaTeX:  \displaystyle 4 gives: LaTeX:  x_{1} =  (3.0000000000) - \frac{- \frac{13 (3.0000000000)^{3}}{100} + \sin{\left((3.0000000000) \right)} + 5}{- \frac{39 (3.0000000000)^{2}}{100} + \cos{\left((3.0000000000) \right)}} = 3.3624717173 LaTeX:  x_{2} =  (3.3624717173) - \frac{- \frac{13 (3.3624717173)^{3}}{100} + \sin{\left((3.3624717173) \right)} + 5}{- \frac{39 (3.3624717173)^{2}}{100} + \cos{\left((3.3624717173) \right)}} = 3.3325234059 LaTeX:  x_{3} =  (3.3325234059) - \frac{- \frac{13 (3.3325234059)^{3}}{100} + \sin{\left((3.3325234059) \right)} + 5}{- \frac{39 (3.3325234059)^{2}}{100} + \cos{\left((3.3325234059) \right)}} = 3.3323203593 LaTeX:  x_{4} =  (3.3323203593) - \frac{- \frac{13 (3.3323203593)^{3}}{100} + \sin{\left((3.3323203593) \right)} + 5}{- \frac{39 (3.3323203593)^{2}}{100} + \cos{\left((3.3323203593) \right)}} = 3.3323203500 LaTeX:  x_{5} =  (3.3323203500) - \frac{- \frac{13 (3.3323203500)^{3}}{100} + \sin{\left((3.3323203500) \right)} + 5}{- \frac{39 (3.3323203500)^{2}}{100} + \cos{\left((3.3323203500) \right)}} = 3.3323203500