Use Newton's method to find the first 5 approximations of the solution to the equation LaTeX:  \displaystyle \sin{\left(x \right)}= \frac{81 x^{3}}{125} - 7 using LaTeX:  \displaystyle x_0=3 .

Using the formula for Newton's method gives LaTeX:  x_{n+1} =  x_{n} - \frac{- \frac{81 x_{n}^{3}}{125} + \sin{\left(x_{n} \right)} + 7}{- \frac{243 x_{n}^{2}}{125} + \cos{\left(x_{n} \right)}}   Using LaTeX:  \displaystyle x_0 = 3 and LaTeX:  \displaystyle n = 0,1,2,3, and LaTeX:  \displaystyle 4 gives: LaTeX:  x_{1} =  (3.0000000000) - \frac{- \frac{81 (3.0000000000)^{3}}{125} + \sin{\left((3.0000000000) \right)} + 7}{- \frac{243 (3.0000000000)^{2}}{125} + \cos{\left((3.0000000000) \right)}} = 2.4398526347 LaTeX:  x_{2} =  (2.4398526347) - \frac{- \frac{81 (2.4398526347)^{3}}{125} + \sin{\left((2.4398526347) \right)} + 7}{- \frac{243 (2.4398526347)^{2}}{125} + \cos{\left((2.4398526347) \right)}} = 2.2966874470 LaTeX:  x_{3} =  (2.2966874470) - \frac{- \frac{81 (2.2966874470)^{3}}{125} + \sin{\left((2.2966874470) \right)} + 7}{- \frac{243 (2.2966874470)^{2}}{125} + \cos{\left((2.2966874470) \right)}} = 2.2873183584 LaTeX:  x_{4} =  (2.2873183584) - \frac{- \frac{81 (2.2873183584)^{3}}{125} + \sin{\left((2.2873183584) \right)} + 7}{- \frac{243 (2.2873183584)^{2}}{125} + \cos{\left((2.2873183584) \right)}} = 2.2872791709 LaTeX:  x_{5} =  (2.2872791709) - \frac{- \frac{81 (2.2872791709)^{3}}{125} + \sin{\left((2.2872791709) \right)} + 7}{- \frac{243 (2.2872791709)^{2}}{125} + \cos{\left((2.2872791709) \right)}} = 2.2872791703