Use Newton's method to find the first 5 approximations of the solution to the equation LaTeX:  \displaystyle e^{- x}= \frac{811 x^{3}}{1000} - 2 using LaTeX:  \displaystyle x_0=1 .

Using the formula for Newton's method gives LaTeX:  x_{n+1} =  x_{n} - \frac{- \frac{811 x_{n}^{3}}{1000} + 2 + e^{- x_{n}}}{- \frac{2433 x_{n}^{2}}{1000} - e^{- x_{n}}}   Using LaTeX:  \displaystyle x_0 = 1 and LaTeX:  \displaystyle n = 0,1,2,3, and LaTeX:  \displaystyle 4 gives: LaTeX:  x_{1} =  (1.0000000000) - \frac{- \frac{811 (1.0000000000)^{3}}{1000} + 2 + e^{- (1.0000000000)}}{- \frac{2433 (1.0000000000)^{2}}{1000} - e^{- (1.0000000000)}} = 1.5558537859 LaTeX:  x_{2} =  (1.5558537859) - \frac{- \frac{811 (1.5558537859)^{3}}{1000} + 2 + e^{- (1.5558537859)}}{- \frac{2433 (1.5558537859)^{2}}{1000} - e^{- (1.5558537859)}} = 1.4176034298 LaTeX:  x_{3} =  (1.4176034298) - \frac{- \frac{811 (1.4176034298)^{3}}{1000} + 2 + e^{- (1.4176034298)}}{- \frac{2433 (1.4176034298)^{2}}{1000} - e^{- (1.4176034298)}} = 1.4043338044 LaTeX:  x_{4} =  (1.4043338044) - \frac{- \frac{811 (1.4043338044)^{3}}{1000} + 2 + e^{- (1.4043338044)}}{- \frac{2433 (1.4043338044)^{2}}{1000} - e^{- (1.4043338044)}} = 1.4042180195 LaTeX:  x_{5} =  (1.4042180195) - \frac{- \frac{811 (1.4042180195)^{3}}{1000} + 2 + e^{- (1.4042180195)}}{- \frac{2433 (1.4042180195)^{2}}{1000} - e^{- (1.4042180195)}} = 1.4042180107