Use Newton's method to find the first 5 approximations of the solution to the equation LaTeX:  \displaystyle \sin{\left(x \right)}= \frac{11 x^{3}}{1000} - 5 using LaTeX:  \displaystyle x_0=9 .

Using the formula for Newton's method gives LaTeX:  x_{n+1} =  x_{n} - \frac{- \frac{11 x_{n}^{3}}{1000} + \sin{\left(x_{n} \right)} + 5}{- \frac{33 x_{n}^{2}}{1000} + \cos{\left(x_{n} \right)}}   Using LaTeX:  \displaystyle x_0 = 9 and LaTeX:  \displaystyle n = 0,1,2,3, and LaTeX:  \displaystyle 4 gives: LaTeX:  x_{1} =  (9.0000000000) - \frac{- \frac{11 (9.0000000000)^{3}}{1000} + \sin{\left((9.0000000000) \right)} + 5}{- \frac{33 (9.0000000000)^{2}}{1000} + \cos{\left((9.0000000000) \right)}} = 8.2726599414 LaTeX:  x_{2} =  (8.2726599414) - \frac{- \frac{11 (8.2726599414)^{3}}{1000} + \sin{\left((8.2726599414) \right)} + 5}{- \frac{33 (8.2726599414)^{2}}{1000} + \cos{\left((8.2726599414) \right)}} = 8.1548048663 LaTeX:  x_{3} =  (8.1548048663) - \frac{- \frac{11 (8.1548048663)^{3}}{1000} + \sin{\left((8.1548048663) \right)} + 5}{- \frac{33 (8.1548048663)^{2}}{1000} + \cos{\left((8.1548048663) \right)}} = 8.1507008430 LaTeX:  x_{4} =  (8.1507008430) - \frac{- \frac{11 (8.1507008430)^{3}}{1000} + \sin{\left((8.1507008430) \right)} + 5}{- \frac{33 (8.1507008430)^{2}}{1000} + \cos{\left((8.1507008430) \right)}} = 8.1506957806 LaTeX:  x_{5} =  (8.1506957806) - \frac{- \frac{11 (8.1506957806)^{3}}{1000} + \sin{\left((8.1506957806) \right)} + 5}{- \frac{33 (8.1506957806)^{2}}{1000} + \cos{\left((8.1506957806) \right)}} = 8.1506957805