Use Newton's method to find the first 5 approximations of the solution to the equation LaTeX:  \displaystyle \sin{\left(x \right)}= \frac{93 x^{3}}{100} - 6 using LaTeX:  \displaystyle x_0=1 .

Using the formula for Newton's method gives LaTeX:  x_{n+1} =  x_{n} - \frac{- \frac{93 x_{n}^{3}}{100} + \sin{\left(x_{n} \right)} + 6}{- \frac{279 x_{n}^{2}}{100} + \cos{\left(x_{n} \right)}}   Using LaTeX:  \displaystyle x_0 = 1 and LaTeX:  \displaystyle n = 0,1,2,3, and LaTeX:  \displaystyle 4 gives: LaTeX:  x_{1} =  (1.0000000000) - \frac{- \frac{93 (1.0000000000)^{3}}{100} + \sin{\left((1.0000000000) \right)} + 6}{- \frac{279 (1.0000000000)^{2}}{100} + \cos{\left((1.0000000000) \right)}} = 3.6276734871 LaTeX:  x_{2} =  (3.6276734871) - \frac{- \frac{93 (3.6276734871)^{3}}{100} + \sin{\left((3.6276734871) \right)} + 6}{- \frac{279 (3.6276734871)^{2}}{100} + \cos{\left((3.6276734871) \right)}} = 2.5940311433 LaTeX:  x_{3} =  (2.5940311433) - \frac{- \frac{93 (2.5940311433)^{3}}{100} + \sin{\left((2.5940311433) \right)} + 6}{- \frac{279 (2.5940311433)^{2}}{100} + \cos{\left((2.5940311433) \right)}} = 2.0991816947 LaTeX:  x_{4} =  (2.0991816947) - \frac{- \frac{93 (2.0991816947)^{3}}{100} + \sin{\left((2.0991816947) \right)} + 6}{- \frac{279 (2.0991816947)^{2}}{100} + \cos{\left((2.0991816947) \right)}} = 1.9633025034 LaTeX:  x_{5} =  (1.9633025034) - \frac{- \frac{93 (1.9633025034)^{3}}{100} + \sin{\left((1.9633025034) \right)} + 6}{- \frac{279 (1.9633025034)^{2}}{100} + \cos{\left((1.9633025034) \right)}} = 1.9530686754