Use Newton's method to find the first 5 approximations of the solution to the equation LaTeX:  \displaystyle \sin{\left(x \right)}= \frac{977 x^{3}}{1000} - 9 using LaTeX:  \displaystyle x_0=3 .

Using the formula for Newton's method gives LaTeX:  x_{n+1} =  x_{n} - \frac{- \frac{977 x_{n}^{3}}{1000} + \sin{\left(x_{n} \right)} + 9}{- \frac{2931 x_{n}^{2}}{1000} + \cos{\left(x_{n} \right)}}   Using LaTeX:  \displaystyle x_0 = 3 and LaTeX:  \displaystyle n = 0,1,2,3, and LaTeX:  \displaystyle 4 gives: LaTeX:  x_{1} =  (3.0000000000) - \frac{- \frac{977 (3.0000000000)^{3}}{1000} + \sin{\left((3.0000000000) \right)} + 9}{- \frac{2931 (3.0000000000)^{2}}{1000} + \cos{\left((3.0000000000) \right)}} = 2.3701675356 LaTeX:  x_{2} =  (2.3701675356) - \frac{- \frac{977 (2.3701675356)^{3}}{1000} + \sin{\left((2.3701675356) \right)} + 9}{- \frac{2931 (2.3701675356)^{2}}{1000} + \cos{\left((2.3701675356) \right)}} = 2.1774423944 LaTeX:  x_{3} =  (2.1774423944) - \frac{- \frac{977 (2.1774423944)^{3}}{1000} + \sin{\left((2.1774423944) \right)} + 9}{- \frac{2931 (2.1774423944)^{2}}{1000} + \cos{\left((2.1774423944) \right)}} = 2.1591384668 LaTeX:  x_{4} =  (2.1591384668) - \frac{- \frac{977 (2.1591384668)^{3}}{1000} + \sin{\left((2.1591384668) \right)} + 9}{- \frac{2931 (2.1591384668)^{2}}{1000} + \cos{\left((2.1591384668) \right)}} = 2.1589787906 LaTeX:  x_{5} =  (2.1589787906) - \frac{- \frac{977 (2.1589787906)^{3}}{1000} + \sin{\left((2.1589787906) \right)} + 9}{- \frac{2931 (2.1589787906)^{2}}{1000} + \cos{\left((2.1589787906) \right)}} = 2.1589787785