Use Newton's method to find the first 5 approximations of the solution to the equation LaTeX:  \displaystyle e^{- x}= \frac{153 x^{3}}{1000} - 3 using LaTeX:  \displaystyle x_0=3 .

Using the formula for Newton's method gives LaTeX:  x_{n+1} =  x_{n} - \frac{- \frac{153 x_{n}^{3}}{1000} + 3 + e^{- x_{n}}}{- \frac{459 x_{n}^{2}}{1000} - e^{- x_{n}}}   Using LaTeX:  \displaystyle x_0 = 3 and LaTeX:  \displaystyle n = 0,1,2,3, and LaTeX:  \displaystyle 4 gives: LaTeX:  x_{1} =  (3.0000000000) - \frac{- \frac{153 (3.0000000000)^{3}}{1000} + 3 + e^{- (3.0000000000)}}{- \frac{459 (3.0000000000)^{2}}{1000} - e^{- (3.0000000000)}} = 2.7413853148 LaTeX:  x_{2} =  (2.7413853148) - \frac{- \frac{153 (2.7413853148)^{3}}{1000} + 3 + e^{- (2.7413853148)}}{- \frac{459 (2.7413853148)^{2}}{1000} - e^{- (2.7413853148)}} = 2.7164472287 LaTeX:  x_{3} =  (2.7164472287) - \frac{- \frac{153 (2.7164472287)^{3}}{1000} + 3 + e^{- (2.7164472287)}}{- \frac{459 (2.7164472287)^{2}}{1000} - e^{- (2.7164472287)}} = 2.7162271508 LaTeX:  x_{4} =  (2.7162271508) - \frac{- \frac{153 (2.7162271508)^{3}}{1000} + 3 + e^{- (2.7162271508)}}{- \frac{459 (2.7162271508)^{2}}{1000} - e^{- (2.7162271508)}} = 2.7162271337 LaTeX:  x_{5} =  (2.7162271337) - \frac{- \frac{153 (2.7162271337)^{3}}{1000} + 3 + e^{- (2.7162271337)}}{- \frac{459 (2.7162271337)^{2}}{1000} - e^{- (2.7162271337)}} = 2.7162271337