Use Newton's method to find the first 5 approximations of the solution to the equation LaTeX:  \displaystyle \sin{\left(x \right)}= \frac{x^{3}}{4} - 7 using LaTeX:  \displaystyle x_0=3 .

Using the formula for Newton's method gives LaTeX:  x_{n+1} =  x_{n} - \frac{- \frac{x_{n}^{3}}{4} + \sin{\left(x_{n} \right)} + 7}{- \frac{3 x_{n}^{2}}{4} + \cos{\left(x_{n} \right)}}   Using LaTeX:  \displaystyle x_0 = 3 and LaTeX:  \displaystyle n = 0,1,2,3, and LaTeX:  \displaystyle 4 gives: LaTeX:  x_{1} =  (3.0000000000) - \frac{- \frac{(3.0000000000)^{3}}{4} + \sin{\left((3.0000000000) \right)} + 7}{- \frac{3 (3.0000000000)^{2}}{4} + \cos{\left((3.0000000000) \right)}} = 3.0505323498 LaTeX:  x_{2} =  (3.0505323498) - \frac{- \frac{(3.0505323498)^{3}}{4} + \sin{\left((3.0505323498) \right)} + 7}{- \frac{3 (3.0505323498)^{2}}{4} + \cos{\left((3.0505323498) \right)}} = 3.0497879735 LaTeX:  x_{3} =  (3.0497879735) - \frac{- \frac{(3.0497879735)^{3}}{4} + \sin{\left((3.0497879735) \right)} + 7}{- \frac{3 (3.0497879735)^{2}}{4} + \cos{\left((3.0497879735) \right)}} = 3.0497878114 LaTeX:  x_{4} =  (3.0497878114) - \frac{- \frac{(3.0497878114)^{3}}{4} + \sin{\left((3.0497878114) \right)} + 7}{- \frac{3 (3.0497878114)^{2}}{4} + \cos{\left((3.0497878114) \right)}} = 3.0497878114 LaTeX:  x_{5} =  (3.0497878114) - \frac{- \frac{(3.0497878114)^{3}}{4} + \sin{\left((3.0497878114) \right)} + 7}{- \frac{3 (3.0497878114)^{2}}{4} + \cos{\left((3.0497878114) \right)}} = 3.0497878114