Use Newton's method to find the first 5 approximations of the solution to the equation LaTeX:  \displaystyle \cos{\left(x \right)}= \frac{173 x^{3}}{250} - 3 using LaTeX:  \displaystyle x_0=1 .

Using the formula for Newton's method gives LaTeX:  x_{n+1} =  x_{n} - \frac{- \frac{173 x_{n}^{3}}{250} + \cos{\left(x_{n} \right)} + 3}{- \frac{519 x_{n}^{2}}{250} - \sin{\left(x_{n} \right)}}   Using LaTeX:  \displaystyle x_0 = 1 and LaTeX:  \displaystyle n = 0,1,2,3, and LaTeX:  \displaystyle 4 gives: LaTeX:  x_{1} =  (1.0000000000) - \frac{- \frac{173 (1.0000000000)^{3}}{250} + \cos{\left((1.0000000000) \right)} + 3}{- \frac{519 (1.0000000000)^{2}}{250} - \sin{\left((1.0000000000) \right)}} = 1.9762915623 LaTeX:  x_{2} =  (1.9762915623) - \frac{- \frac{173 (1.9762915623)^{3}}{250} + \cos{\left((1.9762915623) \right)} + 3}{- \frac{519 (1.9762915623)^{2}}{250} - \sin{\left((1.9762915623) \right)}} = 1.6732159862 LaTeX:  x_{3} =  (1.6732159862) - \frac{- \frac{173 (1.6732159862)^{3}}{250} + \cos{\left((1.6732159862) \right)} + 3}{- \frac{519 (1.6732159862)^{2}}{250} - \sin{\left((1.6732159862) \right)}} = 1.6226990190 LaTeX:  x_{4} =  (1.6226990190) - \frac{- \frac{173 (1.6226990190)^{3}}{250} + \cos{\left((1.6226990190) \right)} + 3}{- \frac{519 (1.6226990190)^{2}}{250} - \sin{\left((1.6226990190) \right)}} = 1.6213585519 LaTeX:  x_{5} =  (1.6213585519) - \frac{- \frac{173 (1.6213585519)^{3}}{250} + \cos{\left((1.6213585519) \right)} + 3}{- \frac{519 (1.6213585519)^{2}}{250} - \sin{\left((1.6213585519) \right)}} = 1.6213576218